Patents by Inventor Chia-Jung Yu

Chia-Jung Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230022020
    Abstract: A semiconductor device includes a transistor. The transistor includes a gate electrode, a channel layer, a gate dielectric layer, a first source/drain region and a second source/drain region and a dielectric pattern. The channel layer is disposed on the gate electrode. The gate dielectric layer is located between the channel layer and the gate electrode. The first source/drain region and the second source/drain region are disposed on the channel layer at opposite sides of the gate electrode. The dielectric pattern is disposed on the channel layer. The first source/drain region covers a first sidewall and a first surface of the dielectric pattern, and a second sidewall opposite to the first sidewall of the dielectric pattern is protruded from a sidewall of the first source/drain region.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 26, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Yin, Chia-Jung Yu, Pin-Cheng Hsu, Chung-Te Lin
  • Publication number: 20220344504
    Abstract: A disclosed semiconductor device includes a substrate, a gate electrode formed on the substrate, a gate dielectric layer formed over the gate electrode, a source electrode located adjacent to a first side of the gate electrode, and a drain electrode located adjacent to a second side of the gate electrode. A gate dielectric formed from an etch-stop layer and/or high-k dielectric layer separates the source electrode from the gate electrode and substrate and separates the drain electrode from the gate electrode and the substrate. First and second oxide layers are formed over the gate dielectric and are located adjacent to the source electrode on the first side of the gate electrode and located adjacent to the drain electrode on the second side of the gate electrode. A semiconductor layer is formed over the first oxide layer, the second oxide layer, the source electrode, the drain electrode, and the gate dielectric.
    Type: Application
    Filed: November 10, 2021
    Publication date: October 27, 2022
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Feng-Cheng YANG, Chung-Te LIN
  • Publication number: 20220344202
    Abstract: A disclosed method of fabricating a semiconductor structure includes forming a first conductive pattern over a substrate, with the first conductive pattern including a first conductive line and a second conductive line. A barrier layer may be conformally formed over the first conductive line and the second conductive line of the first conductive pattern. An insulating layer may be formed over the barrier layer. The insulating layer may be patterned to form openings between conductive lines of the first conductive pattern a second conductive pattern may be formed in the openings. The second conductive pattern may include a third conductive line is physically separated from the first conductive pattern by the barrier layer. The presence of the barrier layer reduces the risk of a short circuit forming between the first and second conductive patterns. In this sense, the second conductive pattern may be self-aligned relative to the first conductive pattern.
    Type: Application
    Filed: November 10, 2021
    Publication date: October 27, 2022
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Feng-Cheng YANG, Chung-Te LIN
  • Publication number: 20220328501
    Abstract: A thin film transistor includes an active layer located over a substrate, a first gate stack including a stack of a first gate dielectric and a first gate electrode and located on a first surface of the active layer, a pair of first contact electrodes contacting peripheral portions of the first surface of the active layer and laterally spaced from each other along a first horizontal direction by the first gate electrode, a second contact electrode contacting a second surface of the active layer that is vertically spaced from the first surface of the active layer, and a pair of second gate stacks including a respective stack of a second gate dielectric and a second gate electrode and located on a respective peripheral portion of a second surface of the active layer.
    Type: Application
    Filed: November 10, 2021
    Publication date: October 13, 2022
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Feng-Cheng YANG, Chung-Te LIN
  • Publication number: 20220093616
    Abstract: A planar insulating spacer layer can be formed over a substrate, and a combination of a semiconducting material layer, a thin film transistor (TFT) gate dielectric layer, and a gate electrode can be formed over the planar insulating spacer layer. A dielectric matrix layer is formed thereabove. A source-side via cavity and a drain-side via cavity can be formed through the dielectric matrix layer over end portions of the semiconducting material layer. Mechanical stress can be generated between the end portions of the semiconducting material layer by changing a lattice constant of end portions of the semiconducting material layer. The mechanical stress can enhance the mobility of charge carriers in a channel portion of the semiconducting material layer.
    Type: Application
    Filed: July 7, 2021
    Publication date: March 24, 2022
    Inventors: Hui-Hsien WEI, Yen-Chung HO, Chia-Jung YU, Yong-Jie WU, Pin-Cheng HSU
  • Publication number: 20210408116
    Abstract: A semiconductor device includes a semiconducting metal oxide fin located over a lower-level dielectric material layer, a gate dielectric layer located on a top surface and sidewalls of the semiconducting metal oxide fin, a gate electrode located on the gate dielectric layer and straddling the semiconducting metal oxide fin, an access-level dielectric material layer embedding the gate electrode and the semiconducting metal oxide fin, a memory cell embedded in a memory-level dielectric material layer and including a first electrode, a memory element, and a second electrode, and a bit line overlying the memory cell. The first electrode may be electrically connected to a drain region within the semiconducting metal oxide fin through a first electrically conductive path, and the second electrode is electrically connected to the bit line.
    Type: Application
    Filed: April 13, 2021
    Publication date: December 30, 2021
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Mauricio MANFRINI, Chung-Te LIN
  • Publication number: 20210408117
    Abstract: A memory structure includes: first and second word lines; a high-k dielectric layer disposed on the first and second word lines; a channel layer disposed on the high-k dielectric layer and comprising a semiconductor material; first and second source electrodes electrically contacting the channel layer; a first drain electrode disposed on the channel layer between the first and second source electrodes; a memory cell electrically connected to the first drain electrode; and a bit line electrically connected to the memory cell.
    Type: Application
    Filed: April 14, 2021
    Publication date: December 30, 2021
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Mauricio MANFRINI, Chung-Te LIN
  • Publication number: 20210399046
    Abstract: A memory structure, device, and method of making the same, the memory structure including a surrounding gate thin film transistor (TFT) and a memory cell stacked on the GAA transistor. The GAA transistor includes: a channel comprising a semiconductor material; a source electrode electrically connected to a first end of the channel; a drain electrode electrically connected to an opposing second end of the channel; a high-k dielectric layer surrounding the channel; and a gate electrode surrounding the high-k dielectric layer. The memory cell includes a first electrode that is electrically connected to the drain electrode.
    Type: Application
    Filed: April 12, 2021
    Publication date: December 23, 2021
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Mauricio MANFRINI, Chung-Te LIN
  • Publication number: 20210376164
    Abstract: A semiconductor device includes a first dielectric layer, a gate electrode embedded within the first dielectric layer, a layer stack including a gate dielectric layer, a channel layer including a semiconducting metal oxide material, and a second dielectric layer, and a source electrode and a drain electrode embedded in the second dielectric layer and contacting a respective portion of a top surface of the channel layer. A combination of the gate electrode, the gate dielectric layer, the channel layer, the source electrode, and the drain electrode forms a transistor. The total length of the periphery of a bottom surface of the channel layer that overlies the gate electrode is equal to the width of the gate electrode or twice the width of the gate electrode, and resputtering of the gate electrode material on sidewalls of the channel layer is minimized.
    Type: Application
    Filed: March 30, 2021
    Publication date: December 2, 2021
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Mauricio MANFRINI, Chung-Te LIN
  • Publication number: 20210375991
    Abstract: A memory device and method of making the same, the memory device including a substrate, a thin film transistor (TFT) disposed on the substrate; and a memory cell disposed on the substrate and overlapped with the TFT. The TFT is configured to selectively supply power to the memory cell memory cell.
    Type: Application
    Filed: April 5, 2021
    Publication date: December 2, 2021
    Inventors: Yen-Chung HO, Yong-Jie WU, Chia-Jung YU, Hui-Hsien WEI, Mauricio MANFRINI, Ken-Ichi GOTO, Pin-Cheng HSU
  • Patent number: 8466729
    Abstract: A delay cell includes a first inverted transistor pair, a second inverted transistor pair and a plurality of delay units. The first inverted transistor pair is used to receive an input signal. The second inverted transistor pair is electrically cross-coupled to the first inverted transistor pair and cross-controlled by the first inverted transistor pair. The delay units are cascaded between the first inverted transistor pair and between the second inverted transistor pair, thereby providing a plurality of signal propagation delays sequentially, wherein the input signal is delayed for a pre-determined time by the first inverted transistor pair, the second inverted transistor pair and the delay units which are operated sequentially, thereby creating an output signal corresponding to the pre-determined time. A digitally controlled oscillator including the aforementioned delay cells is provided.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: June 18, 2013
    Assignee: National Chiao Tung University
    Inventors: Chen-Yi Lee, Chien-Ying Yu, Chia-Jung Yu
  • Publication number: 20130038369
    Abstract: A delay cell includes a first inverted transistor pair, a second inverted transistor pair and a plurality of delay units. The first inverted transistor pair is used to receive an input signal. The second inverted transistor pair is electrically cross-coupled to the first inverted transistor pair and cross-controlled by the first inverted transistor pair. The delay units are cascaded between the first inverted transistor pair and between the second inverted transistor pair, thereby providing a plurality of signal propagation delays sequentially, wherein the input signal is delayed for a pre-determined time by the first inverted transistor pair, the second inverted transistor pair and the delay units which are operated sequentially, thereby creating an output signal corresponding to the pre-determined time. A digitally controlled oscillator including the aforementioned delay cells is provided.
    Type: Application
    Filed: January 18, 2012
    Publication date: February 14, 2013
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Chen-Yi LEE, Chien-Ying YU, Chia-Jung YU
  • Patent number: 7691390
    Abstract: The present invention is directed to an isolated polypeptide containing SEQ ID NO: 1 or an immunogenic fragment thereof. Also disclosed is an isolated nucleic acid encoding the polypeptide or containing a sequence at least 70% identical to SEQ ID NO: 3. Within the scope of this invention are related expression vectors, host cells, and antibodies. Also disclosed are methods of producing the polypeptide, diagnosing coronavirus infection, and identifying a test compound for treating coronavirus infection.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: April 6, 2010
    Inventors: Fang-Jen Lee, Chia-Jung Yu, Ming-Fu Chang, Hong-Nerng Ho
  • Publication number: 20090068636
    Abstract: The present invention is directed to an isolated polypeptide containing SEQ ID NO: 1 or an immunogenic fragment thereof. Also disclosed is an isolated nucleic acid encoding the polypeptide or containing a sequence at least 70% identical to SEQ ID NO: 3. Within the scope of this invention are related expression vectors, host cells, and antibodies. Also disclosed are methods of producing the polypeptide, diagnosing coronavirus infection, and identifying a test compound for treating coronavirus infection.
    Type: Application
    Filed: September 19, 2007
    Publication date: March 12, 2009
    Inventors: Fang-Jen Lee, Chia-Jung Yu, Ming-Fu Chang, Hong-Nerng Ho