Patents by Inventor Chia-Ling Kao
Chia-Ling Kao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250110307Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: ApplicationFiled: December 12, 2024Publication date: April 3, 2025Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
-
Patent number: 12266852Abstract: An electronic device is provided. The electronic device includes a first substrate, an insulating layer, a first conductive layer and a second conductive layer. The insulating layer is overlapped with the first substrate. The second conductive layer contacts with the first conductive layer. The first conductive layer and the second conductive layer are disposed between the first substrate and the insulating layer. The second conductive layer is disposed between the first conductive layer and the insulating layer. Moreover, a thermal expansion coefficient of the second conductive layer is between a thermal expansion coefficient of the first conductive layer and a thermal expansion coefficient of the insulating layer.Type: GrantFiled: January 2, 2024Date of Patent: April 1, 2025Assignee: INNOLUX CORPORATIONInventors: Chia-Ping Tseng, Ker-Yih Kao, Chia-Chi Ho, Ming-Yen Weng, Hung-I Tseng, Shu-Ling Wu, Huei-Ying Chen
-
Patent number: 12204163Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: GrantFiled: February 5, 2024Date of Patent: January 21, 2025Assignee: TDK TAIWAN CORP.Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
-
Publication number: 20240290623Abstract: Exemplary semiconductor processing methods may include providing a pre-treatment precursor to a processing a remote plasma system of a semiconductor processing chamber. The methods may include generating plasma effluents of the pre-treatment precursor in the remote plasma system. The methods may include flowing plasma effluents of the pre-treatment precursor to a processing region of the semiconductor processing chamber. A substrate including alternating layers of material may be disposed within the processing region. The alternating layers of material may include a silicon-and-germanium-containing material. The methods may include contacting the substrate with the plasma effluents of the pre-treatment precursor. The methods may include etching the silicon-and-germanium-containing material. The methods may include providing a post-treatment precursor to the processing region. The methods may include contacting the substrate with the post-treatment precursor.Type: ApplicationFiled: February 28, 2023Publication date: August 29, 2024Applicant: Applied Materials, Inc.Inventors: Bin Yao, Zihui Li, Jiayin Huang, Anchuan Wang, Chia-Ling Kao, Nitin K. Ingle
-
Publication number: 20220020599Abstract: Exemplary processing methods may include depositing a boron-containing material or a silicon-and-boron-containing material on a substrate disposed within a processing region of a semiconductor processing chamber. The methods may include etching portions of the boron-containing material or the silicon-and-boron-containing material with a chlorine-containing precursor to form one or more features in the substrate. The methods may also include removing remaining portions of the boron-containing material or the silicon-and-boron-containing material from the substrate with a fluorine-containing precursor.Type: ApplicationFiled: July 18, 2021Publication date: January 20, 2022Applicant: Applied Materials, Inc.Inventors: Takehito Koshizawa, Karthik Janakiraman, Rui Cheng, Krishna Nittala, Menghui Li, Ming-Yuan Chuang, Susumu Shinohara, Juan Guo, Xiawan Yang, Russell Chin Yee Teo, Zihui Li, Chia-Ling Kao, Qu Jin, Anchuan Wang
-
Patent number: 10872778Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench. A spacer may be formed along a sidewall of the trench, and the spacer may include a plurality of layers including a first layer of a carbon-containing material, a second layer of an oxygen-containing material, and a third layer of a carbon-containing material. The second layer of the spacer may be disposed between the first layer and third layer of the spacer. The methods may also include removing the oxygen-containing material.Type: GrantFiled: July 6, 2018Date of Patent: December 22, 2020Assignee: Applied Materials, Inc.Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
-
Patent number: 10755941Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench, and a layer of an oxygen-containing material may be disposed within the trench and exposed on the substrate. The methods may include halting delivery of the hydrogen-containing precursor. The methods may also include removing the oxygen-containing material.Type: GrantFiled: July 6, 2018Date of Patent: August 25, 2020Assignee: Applied Materials, Inc.Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
-
Publication number: 20200013632Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench. A spacer may be formed along a sidewall of the trench, and the spacer may include a plurality of layers including a first layer of a carbon-containing material, a second layer of an oxygen-containing material, and a third layer of a carbon-containing material. The second layer of the spacer may be disposed between the first layer and third layer of the spacer. The methods may also include removing the oxygen-containing material.Type: ApplicationFiled: July 6, 2018Publication date: January 9, 2020Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
-
Publication number: 20200013628Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench, and a layer of an oxygen-containing material may be disposed within the trench and exposed on the substrate. The methods may include halting delivery of the hydrogen-containing precursor. The methods may also include removing the oxygen-containing material.Type: ApplicationFiled: July 6, 2018Publication date: January 9, 2020Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
-
Patent number: 10170336Abstract: Embodiments of the present technology may include a method of etching. The method may include flowing a gas through a plasma to form plasma effluents. The method may also include reacting plasma effluents with a first layer defining a first feature. The first feature may include a first sidewall, a second sidewall, and a bottom. The first sidewall, the second sidewall, and the bottom may include the first layer. The first layer may be characterized by a first thickness on the sidewall. The method may further include forming a second layer from the reaction of the plasma effluents with the first layer. The first layer may be replaced by the second layer. The second layer may be characterized by a second thickness. The second thickness may be greater than or equal to the first thickness. The method may also include removing the second layer to expose a third layer.Type: GrantFiled: August 4, 2017Date of Patent: January 1, 2019Assignee: Applied Materials, Inc.Inventors: Zihui Li, Chia-Ling Kao, Anchuan Wang, Nitin K. Ingle
-
Patent number: 9514953Abstract: Implementations described herein generally relate to semiconductor manufacturing and more particularly to methods for etching a low-k dielectric barrier layer disposed on a substrate using a non-carbon based approach. In one implementation, a method for etching a barrier low-k layer is provided. The method comprises (a) exposing a surface of the low-k barrier layer to a treatment gas mixture to modify at least a portion of the low-k barrier layer and (b) chemically etching the modified portion of the low-k barrier layer by exposing the modified portion to a chemical etching gas mixture, wherein the chemical etching gas mixture includes at least an ammonium gas and a nitrogen trifluoride gas or at least a hydrogen gas and a nitrogen trifluoride gas.Type: GrantFiled: November 14, 2014Date of Patent: December 6, 2016Assignee: APPLIED MATERIALS, INC.Inventors: Chia-Ling Kao, Sean Kang, Jeremiah T. Pender, Srinivas D. Nemani, He Ren, Mehul Naik
-
Patent number: 9299577Abstract: Methods for eliminating early exposure of a conductive layer in a dual damascene structure and for etching a dielectric barrier layer in the dual damascene structure are provided. In one embodiment, a method for etching a dielectric barrier layer disposed on a substrate includes patterning a substrate having a dielectric bulk insulating layer disposed on a dielectric barrier layer using a hardmask layer disposed on the dielectric bulk insulating layer as an etching mask, exposing a portion of the dielectric barrier layer after removing the dielectric bulk insulating layer uncovered by the dielectric bulk insulating layer, removing the hardmask layer from the substrate, and subsequently etching the dielectric barrier layer exposed by the dielectric bulk insulating layer.Type: GrantFiled: November 13, 2014Date of Patent: March 29, 2016Assignee: APPLIED MATERIALS, INC.Inventors: He Ren, Chia-Ling Kao, Sean Kang, Jeremiah T P Pender, Srinivas D. Nemani, Mehul B. Naik
-
Publication number: 20150214101Abstract: Methods for eliminating early exposure of a conductive layer in a dual damascene structure and for etching a dielectric barrier layer in the dual damascene structure are provided. In one embodiment, a method for etching a dielectric barrier layer disposed on a substrate includes patterning a substrate having a dielectric bulk insulating layer disposed on a dielectric barrier layer using a hardmask layer disposed on the dielectric bulk insulating layer as an etching mask, exposing a portion of the dielectric barrier layer after removing the dielectric bulk insulating layer uncovered by the dielectric bulk insulating layer, removing the hardmask layer from the substrate, and subsequently etching the dielectric barrier layer exposed by the dielectric bulk insulating layer.Type: ApplicationFiled: November 13, 2014Publication date: July 30, 2015Inventors: He REN, Chia-Ling KAO, Sean KANG, Jeremiah T P PENDER, Srinivas D. NEMANI, Mehul B. NAIK
-
Publication number: 20150140827Abstract: Implementations described herein generally relate to semiconductor manufacturing and more particularly to methods for etching a low-k dielectric barrier layer disposed on a substrate using a non-carbon based approach. In one implementation, a method for etching a barrier low-k layer is provided. The method comprises (a) exposing a surface of the low-k barrier layer to a treatment gas mixture to modify at least a portion of the low-k barrier layer and (b) chemically etching the modified portion of the low-k barrier layer by exposing the modified portion to a chemical etching gas mixture, wherein the chemical etching gas mixture includes at least an ammonium gas and a nitrogen trifluoride gas or at least a hydrogen gas and a nitrogen trifluoride gas.Type: ApplicationFiled: November 14, 2014Publication date: May 21, 2015Inventors: Chia-Ling KAO, Sean KANG, Jeremiah T. PENDER, Srinivas D. NEMANI, He REN, Mehul NAIK
-
Patent number: 9006106Abstract: Methods of removing metal hardmasks in the presence of ultra low-k dielectric films are described. In an example, a method of patterning a low-k dielectric film includes forming a pattern in a metal nitride hardmask layer formed above a low-k dielectric film formed above a substrate. The method also includes etching, using the metal nitride hardmask layer as a mask, the pattern at least partially into the low-k dielectric film, the etching involving using a plasma etch based on SiFx. The etching also involves forming an SiOx passivation layer at least on sidewalls of the low-k dielectric film formed during the etching. The method also includes removing the metal nitride hardmask layer by a dry etch process, where the SiOx passivation layer protects the low-k dielectric film during the removing.Type: GrantFiled: May 8, 2013Date of Patent: April 14, 2015Assignee: Applied Materials, Inc.Inventors: Chia-Ling Kao, Kwang-soo Kim, Sean S. Kang, Srinivas D. Nemani
-
Patent number: 8992792Abstract: Methods of fabricating ultra low-k dielectric self-aligned vias are described. In an example, a method of forming a self-aligned via (SAV) in a low-k dielectric film includes forming a trench pattern in a metal nitride hardmask layer formed above a low-k dielectric film formed above a substrate. A via pattern is formed in a masking layer formed above the metal nitride hardmask layer. The via pattern is etched at least partially into the low-k dielectric film, the etching comprising using a plasma etch using a chemistry based on CF4, H2, and a diluent inert gas composition.Type: GrantFiled: December 21, 2012Date of Patent: March 31, 2015Assignee: Applied Materials, Inc.Inventors: Chih-Yang Chang, Sean S. Kang, Chia-Ling Kao, Nikolaos Bekiaris
-
Patent number: 8987139Abstract: Methods of patterning low-k dielectric films are described. In an example, In an embodiment, a method of patterning a low-k dielectric film involves forming and patterning a metal nitride mask layer above a low-k dielectric layer. The low-k dielectric layer is disposed above a substrate. The method also involves passivating the metal nitride mask layer by treating with a plasma based on O2/N2/SixFy. The method also involves etching a portion of the low-k dielectric layer.Type: GrantFiled: January 21, 2014Date of Patent: March 24, 2015Assignee: Applied Materials, Inc.Inventors: Chia-Ling Kao, Sean S. Kang, Srinivas D. Nemani
-
Publication number: 20150064921Abstract: Methods for etching a material layer disposed on the substrate using a low temperature etching process along with a subsequent low temperature plasma annealing process are provided. In one embodiment, a method for etching a material layer disposed on a substrate includes transferring a substrate having a material layer disposed thereon into an etching processing chamber, supplying an etching gas mixture into the processing chamber, remotely generating a plasma in the etching gas mixture to etch the material layer disposed on the substrate, and plasma annealing the material layer at a substrate temperature less than 100 degrees Celsius.Type: ApplicationFiled: August 30, 2013Publication date: March 5, 2015Inventors: Srinivas D. NEMANI, Sean S. KANG, Jeremiah T. P. PENDER, Chia-Ling KAO, Sergey G. BELOSTOTSKIY, Lina ZHU
-
Patent number: 8895449Abstract: A method of selectively removing fluorocarbon layers from overlying low-k dielectric material is described. These protective plasma treatments (PPT) are delicate alternatives to traditional post-etch treatments (PET). The method includes sequential exposure to (1) a local plasma formed from a silicon-fluorine precursor followed by (2) an exposure to plasma effluents formed in a remote plasma from a fluorine-containing precursor. The remote plasma etch (2) has been found to be highly selective of the residual material following the local plasma silicon-fluorine exposure. The sequential process (1)-(2) avoids exposing the low-k dielectric material to oxygen which would undesirably increase its dielectric constant.Type: GrantFiled: August 14, 2013Date of Patent: November 25, 2014Assignee: Applied Materials, Inc.Inventors: Lina Zhu, Sean S. Kang, Srinivas D. Nemani, Chia-Ling Kao
-
Publication number: 20140342532Abstract: A method of selectively removing fluorocarbon layers from overlying low-k dielectric material is described. These protective plasma treatments (PPT) are delicate alternatives to traditional post-etch treatments (PET). The method includes sequential exposure to (1) a local plasma formed from a silicon-fluorine precursor followed by (2) an exposure to plasma effluents formed in a remote plasma from a fluorine-containing precursor. The remote plasma etch (2) has been found to be highly selective of the residual material following the local plasma silicon-fluorine exposure. The sequential process (1)-(2) avoids exposing the low-k dielectric material to oxygen which would undesirably increase its dielectric constant.Type: ApplicationFiled: August 14, 2013Publication date: November 20, 2014Applicant: Applied Materials, Inc.Inventors: Lina Zhu, Sean S. Kang, Srinivas D. Nemani, Chia-Ling Kao