Patents by Inventor Chia-Ling Lu

Chia-Ling Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11931187
    Abstract: A method for predicting clinical severity of a neurological disorder includes steps of: a) identifying, according to a magnetic resonance imaging (MRI) image of a brain, brain image regions each of which contains a respective portion of diffusion index values of a diffusion index, which results from image processing performed on the MRI image; b) for one of the brain image regions, calculating a characteristic parameter based on the respective portion of the diffusion index values; and c) calculating a severity score that represents the clinical severity of the neurological disorder of the brain based on the characteristic parameter of the one of the brain image regions via a prediction model associated with the neurological disorder.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: March 19, 2024
    Assignees: Chang Gung Medical Foundation Chang Gung Memorial Hospital at Keelung, Chang Gung Memorial Hospital, Linkou, Chang Gung University
    Inventors: Jiun-Jie Wang, Yi-Hsin Weng, Shu-Hang Ng, Jur-Shan Cheng, Yi-Ming Wu, Yao-Liang Chen, Wey-Yil Lin, Chin-Song Lu, Wen-Chuin Hsu, Chia-Ling Chen, Yi-Chun Chen, Sung-Han Lin, Chih-Chien Tsai
  • Publication number: 20230395450
    Abstract: A disclosed semiconductor structure may include an interposer, a first semiconductor die electrically coupled to the interposer, a packaging substrate electrically coupled to the interposer, and a capping layer covering one or more of a first surface of the first semiconductor die and a second surface of the packaging substrate. The capping layer may be formed over respective surfaces of each of the first semiconductor die and the packaging substrate. In certain embodiments, the capping layer may be formed only on the first surface of the first semiconductor die and not formed over the package substrate. In further embodiments, the semiconductor structure may include a second semiconductor die, such that the capping layer covers a surface of only one of the first semiconductor die and the second semiconductor die. The semiconductor structure may include a molding compound die frame that is partially or completely covered by the capping layer.
    Type: Application
    Filed: June 1, 2022
    Publication date: December 7, 2023
    Inventors: Jing-Ye Juang, Hsien-Wei Chen, Chia-Ling Lu, Shin-Puu Jeng
  • Patent number: 9994967
    Abstract: The present invention provides a copper film with large grains, where, at least one surface, more than 50% area of the copper film is [100]-oriented grains, and the average size of [100]-oriented grains is more than 150 ?m. The grains on the copper film have large grain sizes and high preferred orientation, so that the copper film is provided with excellent properties such as flexibility, stability and electro-migration resistance. A copper foil laminate with the above-mentioned copper film is also herein provided.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: June 12, 2018
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Chih Chen, Chia-Ling Lu
  • Publication number: 20160168746
    Abstract: The present invention provides a copper film with large grains, where, at least one surface, more than 50% area of the copper film is [100]-oriented grains, and the average size of [100]-oriented grains is more than 150 ?m. The grains on the copper film have large grain sizes and high preferred orientation, so that the copper film is provided with excellent properties such as flexibility, stability and electro-migration resistance. A copper foil laminate with the above-mentioned copper film is also herein provided.
    Type: Application
    Filed: November 23, 2015
    Publication date: June 16, 2016
    Inventors: CHIH CHEN, CHIA-LING LU
  • Patent number: 9153570
    Abstract: An electrostatic discharge tolerant device includes a semiconductor body having a first conductivity type, and a pad. A surrounding well having a second conductivity type is laid out in a ring to surround an area for an electrostatic discharge circuit in the semiconductor body. The surrounding well is relatively deep, and in addition to defining the area for the electrostatic discharge circuit, provides the first terminal of a diode formed with the semiconductor body. Within the area surrounded by the surrounding well, a diode coupled to the pad and a transistor coupled to the voltage reference are connected in series and form a parasitic device in the semiconductor body.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 6, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Publication number: 20150064496
    Abstract: The present invention relates to a single crystal copper having [100] orientation and a volume of 0.1˜4.0×106 ?m3. The present invention further provides a manufacturing method for the single crystal copper and a substrate comprising the same.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Inventors: Chih CHEN, King-Ning TU, Chia-Ling LU
  • Patent number: 8952457
    Abstract: An ESD protection circuit including a substrate of a first conductivity type, an annular well region of a second conductivity type, two first regions of the first conductivity type and at least one transistor of the second conductivity type is provided. The annular well region is disposed in the substrate. The first regions are disposed in the substrate and surrounded by the annular well region. The at least one transistor is disposed on the substrate between the first regions and including a source, a gate, and a drain. The annular well region and the drain are coupled to a first voltage source. The source and one of the first regions are coupled to a second voltage source, and the other of the first regions is coupled to a substrate triggering circuit.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: February 10, 2015
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 8748936
    Abstract: A semiconductor device includes a first well region of a first conductivity type, a second well region of a second conductive type within the first well region. A first region of the first conductivity type and a second region of the second conductivity type are disposed within the second well region. A third region of the first conductivity type and a fourth region of the second conductivity type are disposed within the first well region, wherein the third region and the fourth region are separated by the second well region. The semiconductor device also includes a switch device coupled to the third region.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 10, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 8345396
    Abstract: An RC delay circuit for providing electrostatic discharge (ESD) protection is described. The circuit employs an NMOS transistor and a PMOS transistor to produce a large effective resistance using a relatively small circuit layout area.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: January 1, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yu-Lien Liu, Yan-Yu Chen, Che-Shih Lin, Tao-Cheng Lu
  • Publication number: 20120286322
    Abstract: A semiconductor device includes a first well region of a first conductivity type, a second well region of a second conductive type within the first well region. A first region of the first conductivity type and a second region of the second conductivity type are disposed within the second well region. A third region of the first conductivity type and a fourth region of the second conductivity type are disposed within the first well region, wherein the third region and the fourth region are separated by the second well region. The semiconductor device also includes a switch device coupled to the third region.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 15, 2012
    Applicant: Macronix International Co., Ltd.
    Inventors: SHIH-YU WANG, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 8253165
    Abstract: A semiconductor device includes a first well region of a first conductivity, a second well region of a second conductivity type, a source region of the second conductivity type within the first well region, and a drain region of the second conductivity type at least partially within the second well region. A well contact to the first well region is coupled to the source. A third doped region of the first conductivity type and a fourth doped region of the second conductivity type are located in the second well region. A first transistor includes the third doped region, the second well region, and the first well region. The first transistor is coupled to a switch device. A second transistor includes the second well region, the first well region, and the source region. The first and the second transistors are configured to provide a current path during an ESD event.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: August 28, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Publication number: 20120205771
    Abstract: A Schottky diode with a low forward voltage drop has an N? type doped drift layer formed on an N+ type doped layer. The N? type doped drift layer has a first surface with a protection ring inside which is a P-type doped area. The N? type doped drift layer surface is further formed with an oxide layer and a metal layer. The contact region between the metal layer and the N? type doped drift layer and the P-type doped area forms a Schottky barrier. The height of the Schottky barrier is lower than the surface of the N? type doped drift layer, thereby reducing the thickness of the N? type doped drift layer under the Schottky barrier. This configuration reduces the forward voltage drop of the Schottky barrier.
    Type: Application
    Filed: July 20, 2011
    Publication date: August 16, 2012
    Applicant: PYNMAX TECHNOLOGY CO., LTD.
    Inventors: Chiun-Yen TUNG, Kai-Ying WANG, Chia-Ling LU, Kuo-Hsien WU, Kun-Hsien CHEN
  • Publication number: 20110216454
    Abstract: An RC delay circuit for providing electrostatic discharge (ESD) protection is described. The circuit employs an NMOS transistor and a PMOS transistor to produce a large effective resistance using a relatively small circuit layout area.
    Type: Application
    Filed: March 8, 2010
    Publication date: September 8, 2011
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yu-Lien Liu, Yan-Yu Chen, Che-Shih Lin, Tao-Cheng Lu
  • Publication number: 20110204447
    Abstract: An electrostatic discharge tolerant device includes a semiconductor body having a first conductivity type, and a pad. A surrounding well having a second conductivity type is laid out in a ring to surround an area for an electrostatic discharge circuit in the semiconductor body. The surrounding well is relatively deep, and in addition to defining the area for the electrostatic discharge circuit, provides the first terminal of a diode formed with the semiconductor body. Within the area surrounded by the surrounding well, a diode coupled to the pad and a transistor coupled to the voltage reference are connected in series and form a parasitic device in the semiconductor body.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: Macronix International Co., Ltd.
    Inventors: SHIH-YU WANG, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Publication number: 20100109076
    Abstract: A semiconductor device includes a first well region of a first conductivity, a second well region of a second conductivity type, a source region of the second conductivity type within the first well region, and a drain region of the second conductivity type at least partially within the second well region. A well contact to the first well region is coupled to the source. A first doped region of the first conductivity type and a second doped region of the second conductivity type are located in the second well region. A first transistor includes the first doped region, the second well region, and the first well region. The first transistor is coupled to a switch device. A second transistor includes the second well region, the first well region, and the source region. The first and the second transistors are configured to provide a current path during an ESD event.
    Type: Application
    Filed: November 4, 2008
    Publication date: May 6, 2010
    Applicant: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Publication number: 20100109043
    Abstract: A semiconductor device includes a first well region of a first conductivity, a second well region of a second conductivity type, a source region of the second conductivity type within the first well region, and a drain region of the second conductivity type at least partially within the second well region. A well contact to the first well region is coupled to the source. A third doped region of the first conductivity type and a fourth doped region of the second conductivity type are located in the second well region. A first transistor includes the third doped region, the second well region, and the first well region. The first transistor is coupled to a switch device. A second transistor includes the second well region, the first well region, and the source region. The first and the second transistors are configured to provide a current path during an ESD event.
    Type: Application
    Filed: March 24, 2009
    Publication date: May 6, 2010
    Applicant: Macronix International Co., Ltd.
    Inventors: SHIH-YU WANG, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 7643258
    Abstract: An ESD protection circuit is adapted for an integrated circuit with a first power source and a second power source. The ESD protection circuit comprises a first silicon controlled rectifier (SCR), and in some embodiments a second silicon controlled rectifier, and a parasitic diode. The silicon rectifiers as well as the parasitic diode can all be formed using a single well formed in a substrate. Further, the ESD protection circuit can be used in systems that have multiple power sources regardless of the difference in voltage between the power sources.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: January 5, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Chun-Hsiang Lai, Chia-Ling Lu
  • Publication number: 20090273033
    Abstract: An ESD protection circuit including a substrate of a first conductivity type, an annular well region of a second conductivity type, two first regions of the first conductivity type and at least one transistor of the second conductivity type is provided. The annular well region is disposed in the substrate. The first regions are disposed in the substrate and surrounded by the annular well region. The at least one transistor is disposed on the substrate between the first regions and including a source, a gate, and a drain. The annular well region and the drain are coupled to a first voltage source. The source and one of the first regions are coupled to a second voltage source, and the other of the first regions is coupled to a substrate triggering circuit.
    Type: Application
    Filed: July 29, 2008
    Publication date: November 5, 2009
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 7573102
    Abstract: In an ESD protection structure and method utilizing substrate triggering for a high-voltage tolerant pad on a substrate, an ESD protection device has a source connected to the pad and a gate and a drain both connected to a ground, and a substrate-triggering control circuit is used to keep the substrate at a low voltage during a normal operation, and pumping the substrate to a high voltage during an ESD event for the ESD protection device to be triggered much easier. The substrate-triggering control circuit is implemented with an active device, thereby reducing the chip size for the circuit and the loading effect on the pad.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: August 11, 2009
    Assignee: Macronix International Co., Ltd.
    Inventors: Meng-Huang Liu, Chun-Hsiang Lai, Shin Su, Yen-Hung Yeh, Chia-Ling Lu, Tao-Cheng Lu