Patents by Inventor Chia-Shiung Tsai

Chia-Shiung Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742262
    Abstract: A novel integrated circuit and method thereof are provided. The integrated circuit includes a plurality of first interconnect pads, a plurality of second interconnect pads, a first inter-level dielectric layer, a thin film resistor, and at least two end-caps. The end-caps, which are connectors for the thin film resistor, are positioned at the same level with the plurality of second interconnect pads. Therefore, an electrical connection between the end-caps and the plurality of second interconnect pads can be formed by directly connection of them. An integrated circuit with a thin film resistor can be made in a cost benefit way accordingly, so as to overcome disadvantages mentioned above.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yuan-Tai Tseng, Chia-Shiung Tsai, Chung-Yen Chou, Ming-Chyi Liu
  • Patent number: 11721752
    Abstract: A semiconductor device includes a doped substrate and a seed layer in direct contact with the substrate. The seed layer includes a first seed sublayer having a first lattice structure. The first seed layer is doped with carbon. The seed layer further includes a second seed sublayer over the first see layer, wherein the second seed layer has a second lattice structure. The semiconductor device further includes a graded layer in direct contact with the seed layer. The graded layer includes a first graded sublayer including AlGaN having a first Al:Ga ratio; a second graded sublayer including AlGaN having a second Al:Ga ratio different from the first Al:Ga ratio; and a third graded sublayer over including AlGaN having a third Al:Ga ratio different from the second Al:Ga ratio. The semiconductor device includes a channel layer over the graded layer. The semiconductor device includes an active layer over the channel layer.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: August 8, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai, Ru-Liang Lee
  • Publication number: 20230187478
    Abstract: Various embodiments of the present application are directed towards a method for forming a metal-insulator-metal (MIM) capacitor comprising an enhanced interfacial layer to reduce breakdown failure. In some embodiments, a bottom electrode layer is deposited over a substrate. A native oxide layer is formed on a top surface of the bottom electrode layer and has a first adhesion strength with the top surface. A plasma treatment process is performed to replace the native oxide layer with an interfacial layer. The interfacial layer is conductive and has a second adhesion strength with the top surface of the bottom electrode layer, and the second adhesion strength is greater than the first adhesion strength. An insulator layer is deposited on the interfacial layer. A top electrode layer is deposited on the insulator layer. The top and bottom electrode layers, the insulator layer, and the interfacial layer are patterned to form a MIM capacitor.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 15, 2023
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Chia-Shiung Tsai, Chung-Yi Yu, Rei-Lin Chu
  • Patent number: 11658224
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a source/drain region arranged within a substrate. A first select gate is arranged over the substrate, and a first memory gate is arranged over the substrate and separated from the source/drain region by the first select gate. An inter-gate dielectric structure is arranged between the first memory gate and the first select gate. The inter-gate dielectric structure extends under the first memory gate. A height of the inter-gate dielectric structure decreases along a direction extending from the first select gate to the first memory gate.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: May 23, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ming Wu, Wei Cheng Wu, Shih-Chang Liu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai
  • Patent number: 11637239
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode over a substrate. A data storage layer is over the bottom electrode and has a first thickness. A capping layer is over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 1.9 and approximately 3 times thicker than the first thickness. A top electrode is over the capping layer.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: April 25, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chin-Chieh Yang, Yu-Wen Liao, Wen-Ting Chu, Chia-Shiung Tsai
  • Patent number: 11611005
    Abstract: A photo-sensitive device includes a uniform layer, a gradated buffer layer over the uniform layer, a silicon layer over the gradated buffer layer, a photo-sensitive light-sensing region in the uniform layer and the silicon layer, a device layer on the silicon layer, and a carrier wafer bonded to the device layer.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hung Cheng, Chia-Shiung Tsai, Cheng-Ta Wu, Xiaomeng Chen, Yen-Chang Chu, Yeur-Luen Tu
  • Publication number: 20230066574
    Abstract: A method for forming an SOI substrate is provided. The method includes following operations. A recycle substrate is received. A first multilayered structure is formed on the recycle substrate. A trench is formed in the first multilayered structure. A lateral etching is performed to remove portions of sidewalls of the trench to form a recess in the first multilayered structure. The trench and the recess are sealed with an epitaxial layer, and a potential cracking interface is formed in the first multilayered structure. A second multilayered structure is formed over the first multilayered structure. The device layer of the recycle substrate is bonded to an insulator layer over an carrier substrate. The first multilayered structure is cleaved along the potential cracking interface to separate the recycle substrate from the second multilayered structure, the insulator layer and the carrier substrate. The device layer is exposed.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: YU-HUNG CHENG, CHING I LI, CHIA-SHIUNG TSAI
  • Publication number: 20230065473
    Abstract: A manufacturing method of a semiconductor device includes at least the following steps. A sacrificial substrate is provided. An epitaxial layer is formed on the sacrificial substrate. An etch stop layer is formed on the epitaxial layer. Carbon atoms are implanted into the etch stop layer. A capping layer and a device layer are formed on the etch stop layer. A handle substrate is bonded to the device layer. The sacrificial substrate, the epitaxial layer, and the etch stop layer having the carbon atoms are removed from the handle substrate.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Chen, Kuei-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Publication number: 20230062601
    Abstract: A method of forming a semiconductor-on-insulator (SOI) substrate includes: forming a first dielectric layer on a first substrate; forming a buffer layer on a second substrate; forming a semiconductor cap on the buffer layer over the second substrate; forming a cleavage plane in the buffer layer; forming a second dielectric layer on the semiconductor cap after forming the cleavage plane; bonding the second dielectric layer on the second substrate to the first dielectric layer on the first substrate; performing a splitting process along the cleavage plane in the buffer layer; removing a first split buffer layer from the semiconductor cap; and removing a second split buffer layer from the second substrate.
    Type: Application
    Filed: August 29, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Chen, Eugene I-Chun Chen, Chia-Shiung Tsai
  • Patent number: 11594413
    Abstract: A semiconductor structure includes a substrate. The semiconductor structure further includes a buffer layer over the substrate, wherein the buffer layer comprises a plurality of III-V layers, and a dopant type of each III-V layer of the plurality of III-V layers is opposite to a dopant of adjacent III-V layers of the plurality of III-V layers. The semiconductor structure further includes an active layer over the buffer layer. The semiconductor structure further includes a dielectric layer over the active layer.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 11594593
    Abstract: Various embodiments of the present application are directed towards a method for forming a metal-insulator-metal (MIM) capacitor comprising an enhanced interfacial layer to reduce breakdown failure. In some embodiments, a bottom electrode layer is deposited over a substrate. A native oxide layer is formed on a top surface of the bottom electrode layer and has a first adhesion strength with the top surface. A plasma treatment process is performed to replace the native oxide layer with an interfacial layer. The interfacial layer is conductive and has a second adhesion strength with the top surface of the bottom electrode layer, and the second adhesion strength is greater than the first adhesion strength. An insulator layer is deposited on the interfacial layer. A top electrode layer is deposited on the insulator layer. The top and bottom electrode layers, the insulator layer, and the interfacial layer are patterned to form a MIM capacitor.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Chia-Shiung Tsai, Chung-Yi Yu, Rei-Lin Chu
  • Patent number: 11532642
    Abstract: The present disclosure relates an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Eugene I-Chun Chen, Kuan-Liang Liu, Szu-Yu Wang, Chia-Shiung Tsai, Ru-Liang Lee, Chih-Ping Chao, Alexander Kalnitsky
  • Publication number: 20220359273
    Abstract: Various embodiments of the present application are directed towards a method for forming a semiconductor-on-insulator (SOI) substrate with a thick device layer and a thick insulator layer. In some embodiments, the method includes forming an insulator layer covering a handle substrate, and epitaxially forming a device layer on a sacrificial substrate. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates, and the sacrificial substrate is removed. The removal includes performing an etch into the sacrificial substrate until the device layer is reached. Because the device layer is formed by epitaxy and transferred to the handle substrate, the device layer may be formed with a large thickness. Further, because the epitaxy is not affected by the thickness of the insulator layer, the insulator layer may be formed with a large thickness.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuan-Liang Liu, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Patent number: 11495489
    Abstract: Various embodiments of the present application are directed towards a method for forming a semiconductor-on-insulator (SOI) substrate with a thick device layer and a thick insulator layer. In some embodiments, the method includes forming an insulator layer covering a handle substrate, and epitaxially forming a device layer on a sacrificial substrate. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates, and the sacrificial substrate is removed. The removal includes performing an etch into the sacrificial substrate until the device layer is reached. Because the device layer is formed by epitaxy and transferred to the handle substrate, the device layer may be formed with a large thickness. Further, because the epitaxy is not affected by the thickness of the insulator layer, the insulator layer may be formed with a large thickness.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuan-Liang Liu, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Publication number: 20220352211
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 3, 2022
    Inventors: Eugene I-Chun Chen, Kuan-Liang Liu, Szu-Yu Wang, Chia-Shiung Tsai, Ru-Liang Lee, Chih-Ping Chao, Alexander Kalnitsky
  • Publication number: 20220320180
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first and second transistors arranged over a substrate. The first transistor includes first channel structures extending between first and second source/drain regions. A first gate electrode is arranged between the first channel structures, and a first protection layer is arranged over a topmost one of the first channel structures. The second transistor includes second channel structures extending between the second source/drain region and a third source/drain region. A second gate electrode is arranged between the second channel structures, and a second protection layer is arranged over a topmost one of the second channel structures. The integrated chip further includes a first interconnect structure arranged between the substrate and the first and second channel structures, and a contact plug structure coupled to the second source/drain region and arranged above the first and second gate electrodes.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Inventors: Kuan-Liang Liu, Sheng-Chau Chen, Chung-Liang Cheng, Chia-Shiung Tsai, Yeong-Jyh Lin, Pinyen Lin, Huang-Lin Chao
  • Publication number: 20220310449
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 29, 2022
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20220285382
    Abstract: A device comprises a control gate structure and a memory gate structure over a substrate, a charge storage layer formed between the control gate structure and the memory gate structure, a first spacer along a sidewall of the memory gate structure, a second spacer along a sidewall of the control gate structure, an oxide layer over a top surface of the memory gate structure, a top spacer over the oxide layer, a first drain/source region formed in the substrate and adjacent to the memory gate structure and a second drain/source region formed in the substrate and adjacent to the control gate structure.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 8, 2022
    Inventors: Chang-Ming Wu, Wei Cheng Wu, Shih-Chang Liu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai
  • Patent number: 11430956
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device architecture, that includes a thin single layer of a conductive etch-stop layer between a lower metal interconnect and a bottom electrode of an RRAM cell. The conductive etch-stop layer provides simplicity in structure and the etch-selectivity of this layer provides protection to the underlying layers. The conductive etch stop layer can be etched using a dry or wet etch to land on the lower metal interconnect. In instances where the lower metal interconnect is copper, etching the conductive etch stop layer to expose the copper does not produce as much non-volatile copper etching by-products as in traditional methods. Compared to traditional methods, some embodiments of the disclosed techniques reduce the number of mask step and also reduce chemical mechanical polishing during the formation of the bottom electrode.
    Type: Grant
    Filed: September 21, 2019
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 11417520
    Abstract: A semiconductor structure includes a substrate. The semiconductor structure further includes a first III-V layer over the substrate, wherein the first III-V layer includes a first dopant type. The semiconductor structure further includes a second III-V layer over the first III-V layer, wherein the second III-V layer has a second dopant type opposite the first dopant type. The semiconductor structure further includes a third III-V layer over the second III-V layer, wherein the third III-V layer has the first dopant type. The semiconductor structure further includes a fourth III-V layer over the third III-V layer, the fourth III-V layer having the second dopant type. The semiconductor structure further includes an active layer over the fourth III-V layer. The semiconductor structure further includes a dielectric layer over the active layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai