Patents by Inventor Chia Yu Wang

Chia Yu Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210098307
    Abstract: Semiconductor device structures are provided. The semiconductor device structure includes a substrate and a first fin structure protruding from the substrate. The semiconductor device structure further includes a gate stack formed across the first fin structure and a first source/drain structure formed over the first fin structure adjacent to the gate stack. The semiconductor device structure further includes a contact structure formed over the first source/drain structure and a dielectric structure formed through the contact structure. In addition, a bottom surface of the contact structure is wider than a top surface of the contact structure.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Lin-Yu HUANG, Sheng-Tsung WANG, Jia-Chuan YOU, Chia-Hao CHANG, Tien-Lu LIN, Yu-Ming LIN, Chih-Hao WANG
  • Publication number: 20210083067
    Abstract: A semiconductor device structure includes a gate stack and an adjacent source/drain contact structure formed over a semiconductor substrate. The semiconductor device structure includes a first gate spacer structure extending from a sidewall of the gate stack to a sidewall of the source/drain contact structure, and a second gate spacer structure formed over the first gate spacer structure and between the gate stack and the source/drain contact structure. The second gate spacer structure includes first and second gate spacer layers adjacent to the sidewall of the gate stack and the sidewall of the source/drain contact structure, respectively, and a third gate spacer layer separating the first gate spacer layer from the second gate spacer layer, so that an air gap is sealed by the first, second, and the third gate spacer layers and the first gate spacer structure.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Sheng-Tsung Wang, Lin-Yu Huang, Chia-Lin Chuang, Chia-Hao Chang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 10943829
    Abstract: A method of forming an integrated circuit structure includes forming a first source/drain contact plug over and electrically coupling to a source/drain region of a transistor, forming a first dielectric hard mask overlapping a gate stack, recessing the first source/drain contact plug to form a first recess, forming a second dielectric hard mask in the first recess, recessing an inter-layer dielectric layer to form a second recess, and forming a third dielectric hard mask in the second recess. The third dielectric hard mask contacts both the first dielectric hard mask and the second dielectric hard mask.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Sheng-Tsung Wang, Jia-Chuan You, Chia-Hao Chang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20210066160
    Abstract: A coating method applied to perform coating with liquid metal thermal grease and a heat dissipation module are provided. The coating method includes: providing liquid metal thermal grease on a surface of an electronic element, and scraping the liquid metal thermal grease by a scraper, to coat the surface of the electronic element with the liquid metal thermal grease. A surface of the scraper is roughened. According to the coating method, the surface of the electronic element is evenly coated with the liquid metal thermal grease effectively.
    Type: Application
    Filed: July 17, 2020
    Publication date: March 4, 2021
    Inventors: Chia-Chang LEE, Chun-Chieh WONG, Cheng-Yu WANG, Tai-Min HSU, Yao-Jen CHANG
  • Publication number: 20210066470
    Abstract: The present disclosure provides embodiments of a semiconductor structure having bi-layer self-aligned contact. The semiconductor structure includes a gate stack disposed on a semiconductor substrate and having a first height, a spacer disposed on a sidewall of the gate stack and having a second height greater than the first height, and a first etch stop layer disposed on a sidewall of the gate spacer and having a third height greater than the second height. The semiconductor structure further includes a first dielectric layer disposed over the gate stack and contacting the gate spacer and the first etch stop layer and a second dielectric layer disposed on the first dielectric layer and contacting the first etch stop layer.
    Type: Application
    Filed: June 8, 2020
    Publication date: March 4, 2021
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 10937884
    Abstract: A semiconductor device structure includes a gate stack and an adjacent source/drain contact structure formed over a semiconductor substrate. The semiconductor device structure includes a first gate spacer structure extending from a sidewall of the gate stack to a sidewall of the source/drain contact structure, and a second gate spacer structure formed over the first gate spacer structure and between the gate stack and the source/drain contact structure. The second gate spacer structure includes first and second gate spacer layers adjacent to the sidewall of the gate stack and the sidewall of the source/drain contact structure, respectively, and a third gate spacer layer separating the first gate spacer layer from the second gate spacer layer, so that an air gap is sealed by the first, second, and the third gate spacer layers and the first gate spacer structure.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: March 2, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sheng-Tsung Wang, Lin-Yu Huang, Chia-Lin Chuang, Chia-Hao Chang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20210057569
    Abstract: A method for forming a semiconductor device structure is provided. The method for forming the semiconductor device structure includes forming a first mask layer covering the gate stack, forming a contact alongside the gate stack and the first mask layer, recessing the contact, etching the first mask layer, and forming a second mask layer covering the contact and a portion of the first mask layer.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 25, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lin-Yu HUANG, Jia-Chuan YOU, Chia-Hao CHANG, Tien-Lu LIN, Yu-Ming LIN, Chih-Hao WANG
  • Publication number: 20210057285
    Abstract: A method includes forming a first dummy gate and a second dummy gate over a fin that protrudes above a substrate; replacing the first dummy gate and the second dummy gate with a first metal gate and a second metal gate, respectively; forming a dielectric cut pattern between the first and the second metal gates, the dielectric cut pattern extending further from the substrate than the first and the second metal gates; forming a patterned mask layer over the first metal gate, the second metal gate, and the dielectric cut pattern, an opening in the patterned mask layer exposing a portion of the first metal gate, a portion of the second metal gate, and a portion of the dielectric cut pattern underlying the opening; filling the opening with a first electrically conductive material; and recessing the first electrically conductive material below an upper surface of the dielectric cut pattern.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Inventors: Lin-Yu Huang, Sheng-Tsung Wang, Chia-Hao Chang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 10927000
    Abstract: A MEMS structure includes a substrate, an inter-dielectric layer on a front side of the substrate, a MEMS component on the inter-dielectric layer, and a chamber disposed within the inter-dielectric layer and through the substrate. The chamber has an opening at a backside of the substrate. An etch stop layer is disposed within the inter-dielectric layer. The chamber has a ceiling opposite to the opening and a sidewall joining the ceiling. The sidewall includes a portion of the etch stop layer.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: February 23, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Li-Che Chen, Te-Yuan Wu, Chia-Huei Lin, Hui-Min Wu, Kun-Che Hsieh, Kuan-Yu Wang, Chung-Yi Chiu
  • Patent number: 10916694
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and forming a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: February 9, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20210019464
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventors: Chia-Ping CHIANG, Ming-Hui CHIH, Chih-Wei HSU, Ping-Chieh WU, Ya-Ting CHANG, Tsung-Yu WANG, Wen-Li CHENG, Hui En YIN, Wen-Chun HUANG, Ru-Gun LIU, Tsai-Sheng GAU
  • Publication number: 20210013159
    Abstract: A semiconductor structure includes a semiconductor device, a plurality of through semiconductor vias (TSV), a first seal ring, and a second seal ring. The TSVs penetrate through the semiconductor device. The TSVs are adjacent to an edge of the semiconductor device. The first seal ring is disposed on and physically connected to one end of each of the TSVs. The second seal ring is disposed on and physically connected to another end of each of the TSVs.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Rung-De Wang, Chen-Hsun Liu, Chin-Yu Ku, Te-Hsun Pang, Chia-Hua Wang, Pei-Shing Tsai, Po-Chang Lin
  • Patent number: 10877089
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Patent number: 10872810
    Abstract: A method for forming a fin field effect transistor device structure includes forming fin structures over a substrate. The method also includes forming a gate structure across the fin structures. The method also includes forming source/drain epitaxial structures over the fin structures. The method also includes forming blocking structures between the source/drain epitaxial structures. The method also includes depositing contact structures over the source/drain epitaxial structures and between the blocking structures. The method also includes removing a top portion of the blocking structures. The method also includes depositing an etch stop layer over the blocking structures and the contact structures, so that an air gap is formed between the etch stop layer and the blocking structure.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lin-Yu Huang, Jia-Chuan You, Chia-Hao Chang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 10867863
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first source/drain structure and a second source/drain structure in a substrate. The method includes forming a first dielectric layer over the first source/drain structure, the second source/drain structure, and the substrate. The method includes forming a gate electrode in the first trench. The method includes removing the first dielectric layer. The method includes forming a first conductive strip structure over the first source/drain structure and the substrate. The method includes partially removing the first conductive strip structure to form a second trench in the first conductive strip structure. The method includes forming a second dielectric layer in the second trench.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lin-Yu Huang, Sheng-Tsung Wang, Jia-Chuan You, Chia-Hao Chang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20200388504
    Abstract: A semiconductor structure includes a metal gate structure including a gate dielectric layer and a gate electrode, the gate electrode including at least a first metal; a conductive layer formed above the gate electrode, the conductive layer including an alloy layer, the alloy layer including at least the first metal and a second metal different from the first metal, the alloy layer extending from a position below a top surface of the metal gate structure to a position above the top surface of the metal gate structure; and a contact feature disposed above the metal gate structure, wherein the contact feature is in direct contact with a top surface of the conductive layer.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Pang-Sheng Chang, Yu-Feng Yin, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao, Chia-Yang Hung, Chia-Sheng Chang, Shu-Huei Suen, Jyu-Horng Shieh, Sheng-Liang Pan, Jack Kuo-Ping Kuo, Shao-Jyun Wu
  • Publication number: 20200388692
    Abstract: In a method for manufacturing a semiconductor device, a gate structure is formed over a channel layer and an isolation insulating layer. A first sidewall spacer layer is formed on a side surface of the gate structure. A sacrificial layer is formed so that an upper portion of the gate structure with the first sidewall spacer layer is exposed from the sacrificial layer and a bottom portion of the gate structure with the first sidewall spacer layer is embedded in the first sacrificial layer. A space is formed between the bottom portion of the gate structure and the sacrificial layer by removing at least part of the first sidewall spacer layer. After the first sidewall spacer layer is removed, an air gap is formed between the bottom portion of the gate structure and the sacrificial layer by forming a second sidewall spacer layer over the gate structure.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Chun-Hsiung LIN, Chia-Hao CHANG, Chih-Hao WANG, Wai-Yi LIEN, Chih-Chao CHOU, Pei-Yu WANG
  • Publication number: 20200381291
    Abstract: A method and structure directed to providing a source/drain isolation structure includes providing a device having a first source/drain region adjacent to a second source/drain region. A masking layer is deposited between the first and second source/drain regions and over an exposed first part of the second source/drain region. After depositing the masking layer, a first portion of an ILD layer disposed on either side of the masking layer is etched, without substantial etching of the masking layer, to expose a second part of the second source/drain region and to expose the first source/drain region. After etching the first portion of the ILD layer, the masking layer is etched to form an L-shaped masking layer. After forming the L-shaped masking layer, a first metal layer is formed over the exposed first source/drain region and a second metal layer is formed over the exposed second part of the second source/drain region.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 3, 2020
    Inventors: Lin-Yu HUANG, Sheng-Tsung WANG, Chia-Hao CHANG, Tien-Lu LIN, Yu-Ming LIN, Chih-Hao WANG
  • Publication number: 20200365249
    Abstract: A method for predicting immunotherapy response of a subject having cancer includes the following steps. A peripheral blood sample is obtained from the subject having cancer before or after receiving the immunotherapy. The number of immune cells in the peripheral blood sample of the subject having cancer is detected. The number of immune cells and a first cut-off value/or a second cut-off value are compared to indicate whether the subject having cancer benefits from the immunotherapy. The first cut-off value/or the second cut-off value is determined by the following steps: a statistical analysis of a correlation between the number of immune cells in a group of subjects having cancer and an expected risk of disease progression in the group of subjects having cancer is performed, and then a statistically significant value used to define the correlation is obtained.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 19, 2020
    Applicant: MiCareo Taiwan Co., Ltd.
    Inventors: Chia-Ying Lee, Ju-Yu Tseng, Hong-Ling Wang, Shin-Hang Wang, Jui-Lin Chen
  • Patent number: 10818612
    Abstract: A manufacturing method of a semiconductor structure includes at least the following steps. A semiconductor device having a first surface and a second surface opposite to the first surface is provided. A plurality of through semiconductor vias (TSV) embedded in the semiconductor device is formed. A first seal ring is formed over the first surface of the semiconductor device. The first seal ring is adjacent to edges of the first surface and is physically in contact with the TSVs. A second seal ring is formed over the second surface of the semiconductor device. The second seal ring is adjacent to edges of the second surface and is physically in contact with the TSVs.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: October 27, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Rung-De Wang, Chen-Hsun Liu, Chin-Yu Ku, Te-Hsun Pang, Chia-Hua Wang, Pei-Shing Tsai, Po-Chang Lin