Patents by Inventor Chia Yu Wang
Chia Yu Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12210055Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.Type: GrantFiled: June 20, 2023Date of Patent: January 28, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
-
Publication number: 20240331796Abstract: The present disclosure describes a magnetic memory device. The magnetic memory device includes a magnetic sensing array configured to sense an external magnetic field strength. The magnetic memory device further includes a voltage modulator configured to, in response to the external magnetic field strength being greater than a threshold magnetic field strength, provide a test voltage different from a current write voltage of the magnetic memory device. The magnetic memory device further includes an error check array configured to use the test voltage as a write voltage of the error check array and provide a bit error rate corresponding to the test voltage. The magnetic memory device further includes a control unit configured to adjust, based on the bit error rate being equal to or less than a threshold bit error rate, a write voltage of the magnetic memory device from the current write voltage to the test voltage.Type: ApplicationFiled: June 10, 2024Publication date: October 3, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Hsiang CHEN, Chih-Yang Chang, Chia Yu Wang, Meng-Chun Shih
-
Patent number: 12040036Abstract: The present disclosure describes a magnetic memory device. The magnetic memory device includes a magnetic sensing array configured to sense an external magnetic field strength. The magnetic memory device further includes a voltage modulator configured to, in response to the external magnetic field strength being greater than a threshold magnetic field strength, provide a test voltage different from a current write voltage of the magnetic memory device. The magnetic memory device further includes an error check array configured to use the test voltage as a write voltage of the error check array and provide a bit error rate corresponding to the test voltage. The magnetic memory device further includes a control unit configured to adjust, based on the bit error rate being equal to or less than a threshold bit error rate, a write voltage of the magnetic memory device from the current write voltage to the test voltage.Type: GrantFiled: July 31, 2023Date of Patent: July 16, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Hsiang Chen, Chih-Yang Chang, Chia Yu Wang, Meng-Chun Shih
-
Publication number: 20230410932Abstract: The present disclosure describes a magnetic memory device. The magnetic memory device includes a magnetic sensing array configured to sense an external magnetic field strength. The magnetic memory device further includes a voltage modulator configured to, in response to the external magnetic field strength being greater than a threshold magnetic field strength, provide a test voltage different from a current write voltage of the magnetic memory device. The magnetic memory device further includes an error check array configured to use the test voltage as a write voltage of the error check array and provide a bit error rate corresponding to the test voltage. The magnetic memory device further includes a control unit configured to adjust, based on the bit error rate being equal to or less than a threshold bit error rate, a write voltage of the magnetic memory device from the current write voltage to the test voltage.Type: ApplicationFiled: July 31, 2023Publication date: December 21, 2023Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Hsiang CHEN, Chih-Yang Chang, Chia Yu Wang, Meng-Chun Shih
-
Publication number: 20230410931Abstract: The present disclosure describes a magnetic memory device. The magnetic memory device includes a magnetic sensing array configured to sense an external magnetic field strength. The magnetic memory device further includes a voltage modulator configured to, in response to the external magnetic field strength being greater than a threshold magnetic field strength, provide a test voltage different from a current write voltage of the magnetic memory device. The magnetic memory device further includes an error check array configured to use the test voltage as a write voltage of the error check array and provide a bit error rate corresponding to the test voltage. The magnetic memory device further includes a control unit configured to adjust, based on the bit error rate being equal to or less than a threshold bit error rate, a write voltage of the magnetic memory device from the current write voltage to the test voltage.Type: ApplicationFiled: June 21, 2022Publication date: December 21, 2023Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Hsiang CHEN, Chih-Yang CHANG, Chia Yu WANG, Meng-Chun SHIH
-
Patent number: 11837312Abstract: The present disclosure describes a magnetic memory device. The magnetic memory device includes a magnetic sensing array configured to sense an external magnetic field strength. The magnetic memory device further includes a voltage modulator configured to, in response to the external magnetic field strength being greater than a threshold magnetic field strength, provide a test voltage different from a current write voltage of the magnetic memory device. The magnetic memory device further includes an error check array configured to use the test voltage as a write voltage of the error check array and provide a bit error rate corresponding to the test voltage. The magnetic memory device further includes a control unit configured to adjust, based on the bit error rate being equal to or less than a threshold bit error rate, a write voltage of the magnetic memory device from the current write voltage to the test voltage.Type: GrantFiled: June 21, 2022Date of Patent: December 5, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Hsiang Chen, Chih-Yang Chang, Chia Yu Wang, Meng-Chun Shih
-
Publication number: 20230333157Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.Type: ApplicationFiled: June 20, 2023Publication date: October 19, 2023Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
-
Patent number: 11726062Abstract: In a method of testing a multilayer structure containing a magnetic layer, one or more network parameters are measured of a waveguide that is electromagnetically coupled with the multilayer structure as a function of frequency and as a function of a magnetic field applied to the multilayer structure during the measuring of the network parameters. Based on the measured one or more network parameters, at least one magnetic property of the magnetic layer of the multilayer structure is determined. The network parameters in some embodiments are S-parameters. The at least one magnetic property may include an effective anisotropy field of the magnetic layer and/or a damping constant of the magnetic layer.Type: GrantFiled: May 5, 2021Date of Patent: August 15, 2023Assignee: Taiwan Semiconductor Manufacturing Company LTDInventors: Chia-Hsiang Chen, Chia Yu Wang, Meng-Chun Shih
-
Patent number: 11726747Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data sate. The first random bit is then read from the MRAM cell.Type: GrantFiled: December 9, 2022Date of Patent: August 15, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
-
Patent number: 11719742Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.Type: GrantFiled: August 8, 2022Date of Patent: August 8, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
-
Publication number: 20230115281Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data sate. The first random bit is then read from the MRAM cell.Type: ApplicationFiled: December 9, 2022Publication date: April 13, 2023Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
-
Patent number: 11531524Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data state. The first random bit is then read from the MRAM cell.Type: GrantFiled: June 7, 2019Date of Patent: December 20, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
-
Publication number: 20220373594Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.Type: ApplicationFiled: August 8, 2022Publication date: November 24, 2022Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
-
Patent number: 11506706Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.Type: GrantFiled: December 18, 2020Date of Patent: November 22, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
-
Publication number: 20220299474Abstract: In a method of testing a multilayer structure containing a magnetic layer, one or more network parameters are measured of a waveguide that is electromagnetically coupled with the multilayer structure as a function of frequency and as a function of a magnetic field applied to the multilayer structure during the measuring of the network parameters. Based on the measured one or more network parameters, at least one magnetic property of the magnetic layer of the multilayer structure is determined. The network parameters in some embodiments are S-parameters. The at least one magnetic property may include an effective anisotropy field of the magnetic layer and/or a damping constant of the magnetic layer.Type: ApplicationFiled: May 5, 2021Publication date: September 22, 2022Inventors: Chia-Hsiang Chen, Chia Yu Wang, Meng-Chun Shih
-
Patent number: 11291318Abstract: A quilt structure with non-powered energy layer having an insulating layer, a first barrier layer, a second barrier layer, a first fabric layer and a second fabric layer is provided. The first barrier layer and the second barrier layer are disposed on two opposite sides of the insulating layer. The first fabric layer is disposed on one of the first barrier layer or the second barrier layer opposite the insulating layer, and the second fabric layer is disposed on another of the first barrier layer or the second barrier layer opposite the insulating layer. At least one of the insulating layer, the first fabric layer and the second fabric layer has bio-energetic fibers or far-infrared fibers.Type: GrantFiled: October 30, 2019Date of Patent: April 5, 2022Assignee: GREEN ENERGY NANO TECHNOLOGY CO., LTD.Inventors: Tien-Show Liang, Shu Han Liang, Shu Ting Liang, Sheng-Tang Wu, En Meng, Juin-Hong Cherng, Wen Sheng Lee, Shu-Jen Chang, Chia-Yu Wang
-
Patent number: 11249131Abstract: A test apparatus includes a tray including at least a first region and a second region, and a cap disposed over the tray. The cap includes a cap body, and at least a first magnet and a second magnet disposed over the cap body. The first magnet is configured to provide a first magnetic field to the first region of the tray, and the second magnet is configured to provide a second magnetic field to the second region of the tray. A strength of the first magnetic field is different from a strength of the second magnetic field.Type: GrantFiled: April 1, 2020Date of Patent: February 15, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Harry-Hak-Lay Chuang, Tien-Wei Chiang, Chia Yu Wang, Meng-Chun Shih, Ching-Huang Wang, Chih-Yang Chang, Chia-Hsiang Chen, Chih-Hui Weng
-
Publication number: 20210311105Abstract: A test apparatus includes a tray including at least a first region and a second region, and a cap disposed over the tray. The cap includes a cap body, and at least a first magnet and a second magnet disposed over the cap body. The first magnet is configured to provide a first magnetic field to the first region of the tray, and the second magnet is configured to provide a second magnetic field to the second region of the tray. A strength of the first magnetic field is different from a strength of the second magnetic field.Type: ApplicationFiled: April 1, 2020Publication date: October 7, 2021Inventors: HARRY-HAK-LAY CHUANG, TIEN-WEI CHIANG, CHIA YU WANG, MENG-CHUN SHIH, CHING-HUANG WANG, CHIH-YANG CHANG, CHIA-HSIANG CHEN, CHIH-HUI WENG
-
Patent number: 11081304Abstract: A load control system includes a power switching device and a control device, wherein the power switching device includes a first power input port, a second power input port and a power output port. The first power input port and the second power input port are electrically connected to a first battery and a second battery respectively, and the power output port is electrically connected to the control device. The power output port receives the power which is input to the first power input port or the second power input port so as to supply the power to the control device. The control device is adapted to control a load to switch and to control the power switching device to utilize the power from the first power input port and the second power input port alternatively, thereby extending the respective usage time of the first battery and the second battery.Type: GrantFiled: March 2, 2018Date of Patent: August 3, 2021Assignee: GRAND MATE CO., LTD.Inventors: Chung-Chin Huang, Chin-Ying Huang, Hsin-Ming Huang, Hsing-Hsiung Huang, Yen-Jen Yeh, Chia-Yu Wang
-
Publication number: 20210137196Abstract: Disclosed are a hairpiece, a hair extension structure, and a hair extension method that attaches a fake-hair bundle to a root position of a real-hair bundle to complete a hair extension. The hairpiece includes an inwardly folded fixing strip having fake-hair compositions with an upper end connected to the fake-hair bundle, and a thermosetting layer pre-combined with an inner side of the fixing strip. The hair extension structure has both fixing strip and thermosetting adhesive layer inwardly folded and the thermosetting adhesive layer covered and adhered onto both upper and lower sides of the real-hair bundle. The hair extension method includes measuring a user's head, preparing equal-division marks, grabbing the real-hair bundle according to the equal-division marks, covering and gluing the thermosetting adhesive layer of the hairpiece onto the real-hair bundle, and heating, melting, and solidifying the thermosetting adhesive layer to complete the hair extension structure of the hairpiece.Type: ApplicationFiled: November 13, 2019Publication date: May 13, 2021Inventors: Yu-Fen Wang, Chia-Yu Wang