Patents by Inventor Chian-Min Richard Ho

Chian-Min Richard Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220108058
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 7, 2022
    Inventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
  • Publication number: 20220043951
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip floorplan. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip floorplan, comprising placing a respective node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the node to be placed at the time step to a position from the plurality of positions using the score distribution.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 10, 2022
    Inventors: Chian-min Richard Ho, William Hang, Mustafa Nazim Yazgan, Anna Darling Goldie, Jeffrey Adgate Dean, Azalia Mirhoseini, Emre Tuncer, Ya Wang, Anand Babu
  • Patent number: 11216609
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 4, 2022
    Assignee: Google LLC
    Inventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-Min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
  • Publication number: 20210334445
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 28, 2021
    Inventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
  • Patent number: 11100266
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip floorplan. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip floorplan, comprising placing a respective node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the node to be placed at the time step to a position from the plurality of positions using the score distribution.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: August 24, 2021
    Assignee: Google LLC
    Inventors: Chian-min Richard Ho, William Hang, Mustafa Nazim Yazgan, Anna Darling Goldie, Jeffrey Adgate Dean, Azalia Mirhoseini, Emre Tuncer, Ya Wang, Anand Babu
  • Publication number: 20200364389
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip floorplan. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip floorplan, comprising placing a respective node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the node to be placed at the time step to a position from the plurality of positions using the score distribution.
    Type: Application
    Filed: June 1, 2020
    Publication date: November 19, 2020
    Inventors: Chian-min Richard Ho, William Hang, Mustafa Nazim Yazgan, Anna Darling Goldie, Jeffrey Adgate Dean, Azalia Mirhoseini, Emre Tuncer, Ya Wang, Anand Babu
  • Patent number: 10699043
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip floorplan. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip floorplan, comprising placing a respective node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the node to be placed at the time step to a position from the plurality of positions using the score distribution.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: June 30, 2020
    Assignee: Google LLC
    Inventors: Chian-min Richard Ho, William Hang, Mustafa Nazim Yazgan, Anna Darling Goldie, Jeffrey Adgate Dean, Azalia Mirhoseini, Emre Tuncer, Ya Wang, Anand Babu
  • Publication number: 20200175216
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip floorplan. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip floorplan, comprising placing a respective node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the node to be placed at the time step to a position from the plurality of positions using the score distribution.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 4, 2020
    Inventors: Chian-min Richard Ho, William Hang, Mustafa Nazim Yazgan, Anna Darling Goldie, Jeffrey Adgate Dean, Azalia Mirhoseini, Emre Tuncer, Ya Wang, Anand Babu
  • Patent number: 9684760
    Abstract: The amount of analysis performed in determining the validity of a property of a digital circuit is measured concurrent with performance of the analysis, and provided as an output when a true/false answer cannot be provided e.g. when stopped due to resource constraints. In some embodiments, a measure of value N indicates that a given property that is being checked will not be violated within a distance N from an initial state from which the analysis started. Therefore, in such embodiments, a measure of value N indicates that the analysis has implicitly or explicitly covered every possible excursion of length N from the initial state, and formally proved that no counter-example is possible within this length N.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: June 20, 2017
    Assignee: Mentor Graphics Corporation
    Inventors: Jeremy Rutledge Levitt, Christophe Gauthron, Chian-Min Richard Ho, Ping Fai Yeung, Kalyana C. Mulam, Ramesh Sathianathan
  • Publication number: 20160125122
    Abstract: The amount of analysis performed in determining the validity of a property of a digital circuit is measured concurrent with performance of the analysis, and provided as an output when a true/false answer cannot be provided e.g. when stopped due to resource constraints. In some embodiments, a measure of value N indicates that a given property that is being checked will not be violated within a distance N from an initial state from which the analysis started. Therefore, in such embodiments, a measure of value N indicates that the analysis has implicitly or explicitly covered every possible excursion of length N from the initial state, and formally proved that no counter-example is possible within this length N.
    Type: Application
    Filed: January 12, 2016
    Publication date: May 5, 2016
    Inventors: Jeremy Rutledge Levitt, Christophe Gauthron, Chian-Min Richard Ho, Ping Fai Yeung, Kalyana C. Mulam, Ramesh Sathianathan
  • Patent number: 9262557
    Abstract: The amount of analysis performed in determining the validity of a property of a digital circuit is measured concurrent with performance of the analysis, and provided as an output when a true/false answer cannot be provided e.g. when stopped due to resource constraints. In some embodiments, a measure of value N indicates that a given property that is being checked will not be violated within a distance N from an initial state from which the analysis started. Therefore, in such embodiments, a measure of value N indicates that the analysis has implicitly or explicitly covered every possible excursion of length N from the initial state, and formally proved that no counter-example is possible within this length N.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: February 16, 2016
    Assignee: Mentor Graphics Corporation
    Inventors: Jeremy Rutledge Levitt, Christophe Gauthron, Chian-Min Richard Ho, Ping Fai Yeung, Kalyana C. Mulam, Ramesh Sathianathan
  • Publication number: 20130239084
    Abstract: The amount of analysis performed in determining the validity of a property of a digital circuit is measured concurrent with performance of the analysis, and provided as an output when a true/false answer cannot be provided e.g. when stopped due to resource constraints. In some embodiments, a measure of value N indicates that a given property that is being checked will not be violated within a distance N from an initial state from which the analysis started. Therefore, in such embodiments, a measure of value N indicates that the analysis has implicitly or explicitly covered every possible excursion of length N from the initial state, and formally proved that no counter-example is possible within this length N.
    Type: Application
    Filed: April 8, 2013
    Publication date: September 12, 2013
    Applicant: Mentor Graphics Corporation
    Inventors: Jeremy Rutledge Levitt, Christophe Gauthron, Chian-Min Richard Ho, Ping Fai Yeung, Kalyana C. Mulam, Ramesh Sathianathan
  • Patent number: 8418121
    Abstract: The amount of analysis performed in determining the validity of a property of a digital circuit is measured concurrent with performance of the analysis, and provided as an output when a true/false answer cannot be provided e.g. when stopped due to resource constraints. In some embodiments, a measure of value N indicates that a given property that is being checked will not be violated within a distance N from an initial state from which the analysis started. Therefore, in such embodiments, a measure of value N indicates that the analysis has implicitly or explicitly covered every possible excursion of length N from the initial state, and formally proved that no counter-example is possible within this length N.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: April 9, 2013
    Assignee: Mentor Graphics Corporation
    Inventors: Jeremy Rutledge Levitt, Christophe Gauthron, Chian-Min Richard Ho, Ping Fai Yeung, Kalyana C. Mulam, Ramesh Sathianathan
  • Publication number: 20110138346
    Abstract: The amount of analysis performed in determining the validity of a property of a digital circuit is measured concurrent with performance of the analysis, and provided as an output when a true/false answer cannot be provided e.g. when stopped due to resource constraints. In some embodiments, a measure of value N indicates that a given property that is being checked will not be violated within a distance N from an initial state from which the analysis started. Therefore, in such embodiments, a measure of value N indicates that the analysis has implicitly or explicitly covered every possible excursion of length N from the initial state, and formally proved that no counter-example is possible within this length N.
    Type: Application
    Filed: February 14, 2011
    Publication date: June 9, 2011
    Applicant: Mentor Graphics Corporation
    Inventors: Jeremy Rutledge Levitt, Christophe Gauthron, Chian-Min Richard Ho, Ping Fai Yeung, Kalyana C. Mulam, Ramesh Sathianathan
  • Patent number: 7890897
    Abstract: The amount of analysis performed in determining the validity of a property of a digital circuit is measured concurrent with performance of the analysis, and provided as an output when a true/false answer cannot be provided e.g. when stopped due to resource constraints. In some embodiments, a measure of value N indicates that a given property that is being checked will not be violated within a distance N from an initial state from which the analysis started. Therefore, in such embodiments, a measure of value N indicates that the analysis has implicitly or explicitly covered every possible excursion of length N from the initial state, and formally proved that no counter-example is possible within this length N.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 15, 2011
    Assignee: Mentor Graphics Corporation
    Inventors: Jeremy Rutledge Levitt, Christophe Gauthron, Chian-Min Richard Ho, Ping Fai Yeung, Kalyana C. Mulam, Ramesh Sathianathan
  • Patent number: 7478028
    Abstract: A programmed computer searches for functional defects in a description of a circuit undergoing functional verification in the following manner. The programmed computer simulates the functional behavior of the circuit in response to a test vector, automatically restores the state of the simulation without causing the simulation to pass through a reset state, and then simulates the functional behavior of the circuit in response to another test vector. A predetermined rule can be used to identify test vectors to be simulated, and the predetermined rule can depend upon a measure of functional verification, including the number of times during simulation when a first state transition is performed by a first-controller at the same time as a second state transition is performed by a second controller. During simulation of the test vectors, manually generated tests or automatically generated checkers can monitor portions of the circuit for defective behavior.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: January 13, 2009
    Inventors: Chian-Min Richard Ho, Robert Kristianto Mardjuki, David Lansing Dill, Jing Chyuarn Lin, Ping Fai Yeung, Paul II Estrada, Jean-Charles Giomi, Tai An Ly, Kalyana C. Mulam, Lawrence Curtis Widdoes, Jr., Paul Andrew Wilcox
  • Patent number: 7454324
    Abstract: A computer is programmed to automatically select a state or a set of states of a digital circuit that are visited during simulation, for use as one or more initial states by a formal verification tool. Such automatic selection of one or more simulation states reduces the set of all simulation states to a small subset, thereby to address the state space explosion problem. Depending on the embodiment, the programmed computer uses one or more criteria provided by a library and/or by the user, in making its selection of states. Such criteria may be based on a property (assertion/checker) of the digital circuit and/or a signal generated during simulation. Furthermore, after such criteria (also called “primary criteria”) are applied, the selected states may be pruned by application of additional criteria (also called “secondary criteria”) prior to formal analysis.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: November 18, 2008
    Inventors: James Andrew Garrard Seawright, Ramesh Sathianathan, Christophe G. Gauthron, Jeremy R. Levitt, Kalyana C. Mulam, Chian-Min Richard Ho, Ping Fai Yeung
  • Patent number: 7318205
    Abstract: The amount of analysis performed in determining the validity of a property of a digital circuit is measured concurrent with performance of the analysis, and provided as an output when a true/false answer cannot be provided e.g. when stopped due to resource constraints. In some embodiments, a measure of value N indicates that a given property that is being checked will not be violated within a distance N from an initial state from which the analysis started. Therefore, in such embodiments, a measure of value N indicates that the analysis has implicitly or explicitly covered every possible excursion of length N from the initial state, and formally proved that no counter-example is possible within this length N.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: January 8, 2008
    Inventors: Jeremy Rutledge Levitt, Christophe Gauthron, Chian-Min Richard Ho, Ping Fai Yeung, Kalyana C. Mulam, Ramesh Sathianathan
  • Patent number: 7007249
    Abstract: A programmed computer generates descriptions of circuits (called “checkers”) that flag functional defects in a description of a circuit undergoing functional verification. The programmed computer automatically converts the circuit's description into a graph, automatically examines the graph for instances of a predetermined arrangement of nodes and connections, and automatically generates instructions that flag a behavior of a device represented by the instance in conformance with a known defective behavior. The checkers can be used during simulation or emulation of the circuit, or during operation of the circuit in a semiconductor die. The circuit's description can be in Verilog or VHDL and the automatically generated checkers can also be described in Verilog or VHDL. Therefore, the checkers can co-simulate with the circuit, monitoring the simulated operation of the circuit and flagging defective behavior.
    Type: Grant
    Filed: January 20, 2003
    Date of Patent: February 28, 2006
    Inventors: Tai An Ly, Jean-Charles Giomi, Kalyana C. Mulam, Paul Andrew Wilcox, David Lansing Dill, Paul II Estrada, Chian-Min Richard Ho, Jing Chyuarn Lin, Robert Kristianto Mardjuki, Lawrence Curtis Widdoes, Jr., Ping Fai Yeung
  • Patent number: 6885983
    Abstract: A programmed computer searches for functional defects in a description of a circuit undergoing functional verification in the following manner. The programmed computer simulates the functional behavior of the circuit in response to a test vector, automatically restores the state of the simulation without causing the simulation to pass through a reset state, and then simulates the functional behavior of the circuit in response to another test vector. A predetermined rule can be used to identify test vectors to be simulated, and the predetermined rule can depend upon a measure of functional verification, including the number of times during simulation when a first state transition is performed by a first controller at the same time as a second state transition is performed by a second controller. During simulation of the test vectors, manually generated tests or automatically generated checkers can monitor portions of the circuit for defective behavior.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: April 26, 2005
    Assignee: Mentor Graphics Corporation
    Inventors: Chian-Min Richard Ho, Robert Kristianto Mardjuki, David Lansing Dill, Jing Chyuarn Lin, Ping Fai Yeung, Paul Il Estrada, Jean-Charles Giomi, Tai An Ly, Kalyana C. Mulam, Lawrence Curtis Widdoes, Jr., Paul Andrew Wilcox