Patents by Inventor Chien-Wei Chiu

Chien-Wei Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9252219
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: February 2, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 9245746
    Abstract: The present invention discloses a semiconductor composite film with a heterojunction and a manufacturing method thereof. The semiconductor composite film includes: a semiconductor substrate; and a semiconductor epitaxial layer, which is formed on the semiconductor substrate, and it has a first surface and a second surface opposite to each other, wherein the heterojunction is formed between the first surface and the semiconductor substrate, and wherein the semiconductor epitaxial layer further includes at least one recess, which is formed by etching the semiconductor epitaxial layer from the second surface toward the first surface. The recess is for mitigating a strain in the semiconductor composite film.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: January 26, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Hung-Der Su, Chien-Wei Chiu, Tsung-Yi Huang
  • Patent number: 9245945
    Abstract: The invention provides a semiconductor device having a weak current channel. The semiconductor device includes a gate, a source and a drain. There are a plurality of insulation layers and a plurality of first conductive type lightly doped regions alternatingly arranged between the gate and the drain; each of the first conductive type lightly doped regions providing a weak current channel between the source and the drain. When the gate is in a relatively low voltage range, the weak current channel is conducted; when the gate is in a relatively high voltage range, the weak current channel is not conducted.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: January 26, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Huang-Ping Chu, Chien-Kai Chang
  • Patent number: 9105757
    Abstract: The present invention discloses a junction barrier Schottky (JBS) diode and a manufacturing method thereof. The JBS diode includes: an N-type gallium nitride (GaN) substrate; an aluminum gallium nitride (AlGaN) barrier layer, which is formed on the N-type GaN substrate; a P-type gallium nitride (GaN) layer, which is formed on or above the N-type GaN substrate; an anode conductive layer, which is formed at least partially on the AlGaN barrier layer, wherein a Schottky contact is formed between part of the anode conductive layer and the AlGaN barrier layer; and a cathode conductive layer, which is formed on the N-type GaN substrate, wherein an ohmic contact is formed between the cathode conductive layer and the N-type GaN substrate, and the cathode conductive layer is not directly connected to the anode conductive layer.
    Type: Grant
    Filed: September 28, 2013
    Date of Patent: August 11, 2015
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Publication number: 20150130067
    Abstract: This invention provides an ohmic contact structure including: a semiconductor substrate having a top surface which includes a plurality of micro-structures; and a conductive layer, which is formed on the micro-structures. An ohmic contact is formed by the conductive layer and the semiconductor substrate. The present invention also provides a semiconductor device having the ohmic contact structure.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Wei Chiu, Ting-Wei Liao, Chieh-Hsiung Kuan, Tsung-Yi Huang, Tsung-Yu Yang
  • Publication number: 20150084060
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 26, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 8981429
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT device includes: a substrate, a first gallium nitride (GaN) layer; a P-type GaN layer, a second GaN layer, a barrier layer, a gate, a source, and a drain. The first GaN layer is formed on the substrate, and has a stepped contour from a cross-section view. The P-type GaN layer is formed on an upper step surface of the stepped contour, and has a vertical sidewall. The second GaN layer is formed on the P-type GaN layer. The barrier layer is formed on the second GaN layer. two dimensional electron gas regions are formed at junctions between the barrier layer and the first and second GaN layers. The gate is formed on an outer side of the vertical sidewall.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: March 17, 2015
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Chih-Fang Huang, Po-Chin Peng, Tsung-Chieh Hsiao, Ya-Hsien Liu, K. C. Chang, Hung-Der Su, Chien-Wei Chiu, Tsung-Yi Huang, Tsung-Yu Yang, Ting-Fu Chang
  • Publication number: 20150021615
    Abstract: The present invention discloses a junction barrier Schottky (JBS) diode and a manufacturing method thereof. The JBS diode includes: an N-type gallium nitride (GaN) substrate; an aluminum gallium nitride (AlGaN) barrier layer, which is formed on the N-type GaN substrate; a P-type gallium nitride (GaN) layer, which is formed on or above the N-type GaN substrate; an anode conductive layer, which is formed at least partially on the AlGaN barrier layer, wherein a Schottky contact is formed between part of the anode conductive layer and the AlGaN barrier layer; and a cathode conductive layer, which is formed on the N-type GaN substrate, wherein an ohmic contact is formed between the cathode conductive layer and the N-type GaN substrate, and the cathode conductive layer is not directly connected to the anode conductive layer.
    Type: Application
    Filed: September 28, 2013
    Publication date: January 22, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 8907432
    Abstract: An isolated device is formed in a substrate in which is formed a high voltage device. The isolated device includes: an isolated well formed in the substrate by a lithography process and an ion implantation process used in forming the high voltage device; a gate formed on the substrate; a source and a drain, which are located in the isolated well at both sides of the gate respectively; a drift-drain region formed beneath the substrate surface, wherein the gate and the drain are separated by the drift-drain region, and the drain is in the drift-drain region; and a mitigation region, which is formed in the substrate and has a shallowest portion located at least below 90% of a depth of the drift-drain region as measured from the substrate surface, wherein the mitigation region and the drift-drain region are defined by a same lithography process.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: December 9, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Patent number: 8859373
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a substrate. The high voltage device includes: a gate, a source and drain, a drift region, and a mitigation region. The gate is formed on an upper surface of the substrate. The source and drain are located at both sides of the gate below the upper surface respectively, and the source and drain are separated by the gate. The drift region is located at least between the gate and the drain. The mitigation region is formed below the drift region, and the drift region has an edge closer to the source. A vertical distance between this edge of the drift region and the mitigation region is less than or equal to five times of a depth of the drift region.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 14, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Publication number: 20140187003
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.
    Type: Application
    Filed: March 9, 2014
    Publication date: July 3, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION, R.O.C
    Inventors: Chih-Fang Huang, Chien-Wei Chiu, Ting-Fu Chang, Tsung-Yu Yang, Tsung-Yi Huang
  • Publication number: 20140179079
    Abstract: The present invention discloses a manufacturing method of a lateral double diffused metal oxide semiconductor (LDMOS) device. The LDMOS device includes: a substrate, an epitaxial layer, a first conductivity type channel stop region, a first conductivity type top region, an isolation oxide region, a field oxide region, a first conductivity type well, a gate, a second conductivity type lightly doped region, a second conductivity type source, and a second conductivity type drain. The present invention defines the channel stop region, the top region, the isolation oxide region, and the field oxide region by a same oxide region mask, wherein the isolation oxide region and the field oxide region are located on the channel stop region and the top region respectively.
    Type: Application
    Filed: October 2, 2013
    Publication date: June 26, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION, R.O.C.
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Publication number: 20140159111
    Abstract: The present invention discloses a semiconductor composite film with a heterojunction and a manufacturing method thereof. The semiconductor composite film includes: a semiconductor substrate; and a semiconductor epitaxial layer, which is formed on the semiconductor substrate, and it has a first surface and a second surface opposite to each other, wherein the heterojunction is formed between the first surface and the semiconductor substrate, and wherein the semiconductor epitaxial layer further includes at least one recess, which is formed by etching the semiconductor epitaxial layer from the second surface toward the first surface. The recess is for mitigating a strain in the semiconductor composite film.
    Type: Application
    Filed: October 8, 2013
    Publication date: June 12, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Hung-Der Su, Chien-Wei Chiu, Tsung-Yi Huang
  • Publication number: 20140159048
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT device includes: a substrate, a first gallium nitride (GaN) layer; a P-type GaN layer, a second GaN layer, a barrier layer, a gate, a source, and a drain. The first GaN layer is formed on the substrate, and has a stepped contour from a cross-section view. The P-type GaN layer is formed on an upper step surface of the stepped contour, and has a vertical sidewall. The second GaN layer is formed on the P-type GaN layer. The barrier layer is formed on the second GaN layer. two dimensional electron gas regions are formed at junctions between the barrier layer and the first and second GaN layers. The gate is formed on an outer side of the vertical sidewall.
    Type: Application
    Filed: May 20, 2013
    Publication date: June 12, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Po-Chin Peng, Tsung-Chieh Hsiao, Ya-Hsien Liu, K.C. Chang, Hung-Der Su, Chien-Wei Chiu, Tsung-Yi Huang, Tsung-Yu Yang, Ting-Fu Chang
  • Patent number: 8710551
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: April 29, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Chih-Fang Huang, Chien-Wei Chiu, Ting-Fu Chang, Tsung-Yu Yang, Tsung-Yi Huang
  • Publication number: 20140061724
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Inventors: Chih-Fang Huang, Chien-Wei Chiu, Ting-Fu Chang, Tsung-Yu Yang, Tsung-Yi Huang
  • Publication number: 20140061658
    Abstract: The present invention discloses an enhanced mode high electron mobility transistor (HEMT) which includes: a P-type gallium nitride (GaN) layer; a barrier layer, which is formed on and connected to the GaN layer; a dielectric layer, which is formed on and connected to the GaN layer, wherein the barrier layer does not overlap at least part of the dielectric layer; a gate, which is formed on the dielectric layer for receiving a gate voltage; and a source and a drain, which are formed at two sides of the gate on the GaN layer respectively; wherein a two dimensional electron gas (2DEG) is formed at a junction of the GaN layer and the barrier layer which does not include a portion of the junction below the gate, and the 2DEG does not electrically connect the source to the drain when there is no voltage applied to the gate.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Inventors: Chien-Wei Chiu, Tsung-Yi Huang
  • Publication number: 20140061786
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device includes a first conductive type substrate, a second conductive type high voltage well, a first conductive type deep buried region, a field oxide region, a first conductive type body region, a gate, a second conductive type source, and a second conductive type drain. The deep buried region is formed below the high voltage well with a gap in between, and the gap is not less than a predetermined distance.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Publication number: 20140048815
    Abstract: A Schottky barrier diode (SBD) is disclosed, which includes: a gallium nitride (GaN) layer, formed on a substrate; an aluminum gallium nitride (AlGaN), formed on the GaN layer; an insulation layer, formed on the AlGaN layer; an anode conducive layer, formed on the insulation layer, wherein Schottky contact is formed between a part of the anode conductive layer and the AlGaN layer or between a part of the anode conductive layer and the GaN layer, and another part of the anode conductive layer is separated from the AlGaN layer by the insulation layer; and a cathode conductive layer, formed on the AlGaN layer, wherein an ohmic contact is formed between the cathode conductive layer and the GaN layer or between the cathode conductive layer and the AlGaN layer, and wherein the anode conductive layer is not directly connected to the cathode conductive layer.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Chih-Fang Huang, Tsung-Yu Yang
  • Publication number: 20140045314
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a substrate. The high voltage device includes: a gate, a source and drain, a drift region, and a mitigation region. The gate is formed on an upper surface of the substrate. The source and drain are located at both sides of the gate below the upper surface respectively, and the source and drain are separated by the gate. The drift region is located at least between the gate and the drain. The mitigation region is formed below the drift region, and the drift region has an edge closer to the source. A vertical distance between this edge of the drift region and the mitigation region is less than or equal to five times of a depth of the drift region.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu