Patents by Inventor Chien Wei Kuan

Chien Wei Kuan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9899920
    Abstract: A voltage regulator includes a plurality of output stages and a controller. The plurality of output stages are arranged for selectively enabling to generate output voltages and output currents or not according to a plurality of control signals, respectively. The controller is arranged for sensing the output currents of the output stages, and generating the control signals according to the sensed output currents. When the controller generates the control signals to reduce a quantity of the enabled output stages, the controller determines whether a summation of the sensed output currents is greater than a first threshold or not to determine whether to enable more output stages, then a period of time later, the controller selectively determines whether the summation of the sensed output currents is greater than a second threshold or not to determine whether to enable more output stages, wherein the second threshold is lower than the first threshold.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: February 20, 2018
    Assignee: MEDIATEK INC.
    Inventors: Chien-Wei Kuan, Yen-Hsun Hsu, Shan-Fong Hong, Chih-Chen Li, Yu-Te Chao
  • Publication number: 20180048272
    Abstract: Provided is a power supply circuit for a wireless mobile device having a plurality of power amplification components. The power supply circuit includes: a first DC-DC converter, for providing at least one constant output voltage (which is provided to the power amplification components) and/or at least one DC intermediate voltage; a second DC-DC converter, for providing a DC component of at least one time-varying output voltage; and at least one linear amplifier. When the at least one linear amplifier receives the at least one DC intermediate voltage from the first DC-DC converter, the at least one linear amplifier provides at least one AC component of the at least one time-varying output voltage. The DC component and the at least one AC component of the at least one time-varying output voltage are combined into the at least one time-varying output voltage and provided to the power amplification components.
    Type: Application
    Filed: April 20, 2017
    Publication date: February 15, 2018
    Inventors: Shih-Mei Lin, Chien-Wei Kuan, Chen-Yen Ho, Che-Hao Meng, Tso-Min Chen, Chia-Sheng Peng, Sheng-Hong Yan
  • Patent number: 9866119
    Abstract: A DC-DC converter includes an inductor, a switch module, a pull-up circuit and a pull-down circuit. The inductor has a first node and a second node, and the second node is coupled to an output node of the DC-DC converter. The switch module is arranged for selectively connecting an input voltage or a ground voltage to the first node of the inductor according to a driving signal. The pull-up circuit is arranged for selectively providing a first current to the output node of the DC-DC converter. The pull-down circuit is arranged for selectively sinking a second current from the output node of the DC-DC converter. In addition, at least one of the first current provided by the pull-up circuit and the second current sunk by the pull-down circuit is determined based on an inductor current flowing through the inductor.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: January 9, 2018
    Assignee: MEDIATEK INC.
    Inventors: Shih-Mei Lin, Chien-Wei Kuan, Chien-Lung Lee, Che-Hao Meng
  • Publication number: 20170310211
    Abstract: The invention provides a regulator for DC-DC hybrid-mode power regulation of an output voltage and a load current. The regulator may include a controller and a back-end circuit. The controller controls the output voltage and the load current by charging a connection node when a driving signal is at an on-level, and stopping charging the connection node when the driving signal is at an off-level. The back-end circuit is coupled to the controller, capable of switching between a first mode and a second mode to control transition of the driving signal by different schemes. The back-end circuit switches from the second mode to the first mode when a mode-switch criterion is satisfied, and whether the mode-switch criterion is satisfied is independent of a measurement of the output voltage.
    Type: Application
    Filed: October 26, 2016
    Publication date: October 26, 2017
    Inventors: Shan-Fong Hong, Chih-Chen Li, Kuan-Yu Chu, Chien-Wei Kuan, Yen-Hsun Hsu
  • Patent number: 9772637
    Abstract: A voltage regulation circuit is provided. The voltage regulation circuit regulates a level of a supply voltage provided by an automotive battery. The voltage regulation circuit includes a selector and an error amplifier. The selector receives a plurality of predetermined voltages and selects one of the plurality of predetermined voltages according to a control signal to serve as a first reference voltage. The error amplifier generates an error signal according to the first reference voltage and a feedback signal. The feedback signal is related to the supply voltage. The voltage regulation circuit regulates the level of the supply voltage according to the error signal.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: September 26, 2017
    Assignee: MediaTek Inc.
    Inventors: Chien-Wei Kuan, Jyh-Pyng Lay, Chih-Ching Yu, Yuh-Long Yeh
  • Patent number: 9735681
    Abstract: A voltage converter is provided. The voltage converter includes a compensation circuit, a first comparator circuit, a first inductor, a first driver circuit, and a phase-lag circuit. The compensation circuit generates a first compensation signal according to a loading state of the voltage converter. The first comparator circuit compares the first compensation signal and a first reference signal to generate a first comparison signal. The first driver circuit generates a first driving voltage to the first inductor according to the first comparison signal. The phase-lag circuit is coupled between the first comparison circuit and the first driver. The phase-lag circuit modifies a duty of the first comparison signal for changing a first inductor current following the first inductor.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: August 15, 2017
    Assignee: MEDIATEK INC.
    Inventors: Chien-Wei Kuan, Yen-Hsun Hsu, Tun-Shih Chen
  • Publication number: 20170222556
    Abstract: A DC-DC converter includes an inductor, a switch module, a pull-up circuit and a pull-down circuit. The inductor has a first node and a second node, and the second node is coupled to an output node of the DC-DC converter. The switch module is arranged for selectively connecting an input voltage or a ground voltage to the first node of the inductor according to a driving signal. The pull-up circuit is arranged for selectively providing a first current to the output node of the DC-DC converter. The pull-down circuit is arranged for selectively sinking a second current from the output node of the DC-DC converter. In addition, at least one of the first current provided by the pull-up circuit and the second current sunk by the pull-down circuit is determined based on an inductor current flowing through the inductor.
    Type: Application
    Filed: July 5, 2016
    Publication date: August 3, 2017
    Inventors: Shih-Mei Lin, Chien-Wei Kuan, Chien-Lung Lee, Che-Hao Meng
  • Publication number: 20170077811
    Abstract: A voltage regulator includes a plurality of output stages and a controller. The plurality of output stages are arranged for selectively enabling to generate output voltages and output currents or not according to a plurality of control signals, respectively. The controller is arranged for sensing the output currents of the output stages, and generating the control signals according to the sensed output currents. When the controller generates the control signals to reduce a quantity of the enabled output stages, the controller determines whether a summation of the sensed output currents is greater than a first threshold or not to determine whether to enable more output stages, then a period of time later, the controller selectively determines whether the summation of the sensed output currents is greater than a second threshold or not to determine whether to enable more output stages, wherein the second threshold is lower than the first threshold.
    Type: Application
    Filed: June 2, 2016
    Publication date: March 16, 2017
    Inventors: Chien-Wei Kuan, Yen-Hsun Hsu, Shan-Fong Hong, Chih-Chen Li, Yu-Te Chao
  • Patent number: 9559583
    Abstract: A power converter includes a wave generator, a low pass filter, a first control circuit, and a second control circuit. The wave generator receives an input voltage, and converts the input signal into a wave signal according to a first control signal and a second control signal. The low pass filter filters the wave signal to generate an output voltage. The first control circuit generates the first control signal according to the wave signal and the output voltage. The second control circuit generates the second control signal according to the wave signal and the output voltage.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: January 31, 2017
    Assignee: MEDIATEK INC.
    Inventors: Hung-chih Lin, Hung-I Wang, Hao-Ping Hong, Chien-Wei Kuan, Yung-Chih Yen
  • Publication number: 20160301301
    Abstract: A voltage supply circuit is provided. The voltage supply circuit may operate at a first or second mode to generate an output voltage at an output node. The voltage supply circuit includes a compensation circuit, a comparator circuit, an inductor, and a driver circuit. The compensation circuit generates a compensation signal according to a feedback signal related to the output voltage. The comparator circuit compares the compensation signal with a first reference signal to generate a comparison signal. The inductor is coupled to the output node. The driver circuit receives the comparison signal and generates a driving voltage to the inductor according to the comparison signal. When the voltage supply circuit enters the second mode from the first mode, a duty of the comparison signal is increased to broaden an operation bandwidth of the voltage supply circuit in a predetermined period at the second mode.
    Type: Application
    Filed: January 14, 2015
    Publication date: October 13, 2016
    Inventors: Chien-Wei KUAN, Yen-Hsun HSU, Tun-Shih CHEN
  • Publication number: 20160301302
    Abstract: A voltage converter is provided. The voltage converter includes a compensation circuit, a first comparator circuit, a first inductor, a first driver circuit, and a phase-lag circuit. The compensation circuit generates a first compensation signal according to a loading state of the voltage converter. The first comparator circuit compares the first compensation signal and a first reference signal to generate a first comparison signal. The first driver circuit generates a first driving voltage to the first inductor according to the first comparison signal. The phase-lag circuit is coupled between the first comparison circuit and the first driver. The phase-lag circuit modifies a duty of the first comparison signal for changing a first inductor current following the first inductor.
    Type: Application
    Filed: January 14, 2015
    Publication date: October 13, 2016
    Inventors: Chien-Wei KUAN, Yen-Hsun HSU, Tun-Shih CHEN
  • Publication number: 20160294376
    Abstract: A voltage supply circuit is provided. The voltage supply circuit is capable of operating at a first mode and generates a loading current at an output node. The voltage supply circuit includes a plurality of inductors and a plurality of drier circuits. The plurality of inductors are coupled to the output node. Each inductor has an inductance value. The plurality driver circuits are coupled to the plurality of inductors respectively. The inductance value of a first inductor among the plurality of inductors is greater than the inductance values of the other inductor.
    Type: Application
    Filed: January 14, 2015
    Publication date: October 6, 2016
    Inventors: Chien-Wei KUAN, Yen-Hsun HSU, Tun-Shih CHEN
  • Publication number: 20160268836
    Abstract: An apparatus for performing hybrid power control in an electronic device includes a charger positioned in the electronic device, and the charger is arranged for selectively charging a battery of the electronic device. In addition, at least one portion of the charger is implemented within a charger chip. For example, the charger may include: a plurality of terminals that are positioned on the charger chip, where the plurality of terminals may include a third terminal and a fourth terminal; a plurality of switching units, positioned on the charger chip; and a control circuit, positioned on the charger chip and coupled to the plurality of switching units. The third terminal and the fourth terminal may be arranged for installing an inductor, where the inductor may be utilized by the charger when the control circuit configures the charger into any of at least two hardware configurations within a plurality of hardware configurations.
    Type: Application
    Filed: May 18, 2016
    Publication date: September 15, 2016
    Inventors: Nien-Hui Kung, Chien-Wei Kuan, Yen-Hsun Hsu
  • Publication number: 20150200608
    Abstract: A power converter includes a wave generator, a low pass filter, a first control circuit, and a second control circuit. The wave generator receives an input voltage, and converts the input signal into a wave signal according to a first control signal and a second control signal. The low pass filter filters the wave signal to generate an output voltage. The first control circuit generates the first control signal according to the wave signal and the output voltage. The second control circuit generates the second control signal according to the wave signal and the output voltage.
    Type: Application
    Filed: January 13, 2014
    Publication date: July 16, 2015
    Applicant: Media Tek Inc.
    Inventors: Hung-chih LIN, Hung-I WANG, Hao-Ping HONG, Chien-Wei KUAN, Yung-Chih YEN
  • Patent number: 9065334
    Abstract: A voltage converter has an input terminal and only N output terminals, and includes a DC-DC power supply block having an input node and an output node, (N+1) switches including N main output switches and an auxiliary switch each having a first end and a second end, and a switch control circuit. The DC-DC power supply block includes an inductor, and a switch module configured for alternating between a first interconnection configuration and a second interconnection configuration during a predetermined time period. First ends of the (N+1) switches are coupled to the output node, and second ends of the N main output switches are coupled to the N output terminals, respectively. The switch control circuit is configured for controlling the switch module and the (N+1) switches, wherein the (N+1) switches are switched on alternately during the predetermined time period.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: June 23, 2015
    Assignee: MEDIATEK INC.
    Inventors: Chien-Wei Kuan, Yen-Hsun Hsu
  • Patent number: 9000742
    Abstract: A signal generating circuit includes: a first signal amplifying circuit arranged to generate a first amplified signal according to a first supply current, a reference signal, and an output signal of the signal generating circuit; a soft-start circuit arranged to generate a control signal according to a soft-start signal; a current controlled circuit arranged to generate the first supply current according to the soft-start signal; and a pass transistor arranged to generate an output signal according to an error amplified signal and the control signal. The error amplified signal is derived from the first amplified signal.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 7, 2015
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Xi Chen, Chien-Wei Kuan
  • Publication number: 20140361760
    Abstract: A voltage regulation circuit is provided. The voltage regulation circuit regulates a level of a supply voltage provided by an automotive battery. The voltage regulation circuit includes a selector and an error amplifier. The selector receives a plurality of predetermined voltages and selects one of the plurality of predetermined voltages according to a control signal to serve as a first reference voltage. The error amplifier generates an error signal according to the first reference voltage and a feedback signal. The feedback signal is related to the supply voltage. The voltage regulation circuit regulates the level of the supply voltage according to the error signal.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Chien-Wei KUAN, Jyh-Pyng LAY, Chih-Ching YU, Yuh-Long YEH
  • Patent number: 8446133
    Abstract: A method of controlling a buck-boost converting circuit is provided. The buck-boost converting circuit has an inductive element, a first conduction controlling element, a second conduction controlling element, a third conduction controlling element, and a fourth conduction controlling element.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: May 21, 2013
    Assignee: Mediatek Inc.
    Inventors: Chien-Wei Kuan, Yen-Hsun Hsu
  • Publication number: 20130113454
    Abstract: A signal generating circuit includes: a first signal amplifying circuit arranged to generate a first amplified signal according to a first supply current, a reference signal, and an output signal of the signal generating circuit; a soft-start circuit arranged to generate a control signal according to a soft-start signal; a current controlled circuit arranged to generate the first supply current according to the soft-start signal; and a pass transistor arranged to generate an output signal according to an error amplified signal and the control signal, wherein the error amplified signal is derived from the first amplified signal.
    Type: Application
    Filed: September 13, 2012
    Publication date: May 9, 2013
    Inventors: Xi Chen, Chien-Wei Kuan
  • Publication number: 20120326691
    Abstract: A voltage converter has an input terminal and only N output terminals, and includes a DC-DC power supply block having an input node and an output node, (N+1) switches including N main output switches and an auxiliary switch each having a first end and a second end, and a switch control circuit. The DC-DC power supply block includes an inductor, and a switch module configured for alternating between a first interconnection configuration and a second interconnection configuration during a predetermined time period. First ends of the (N+1) switches are coupled to the output node, and second ends of the N main output switches are coupled to the N output terminals, respectively. The switch control circuit is configured for controlling the switch module and the (N+1) switches, wherein the (N+1) switches are switched on alternately during the predetermined time period.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Inventors: Chien-Wei Kuan, Yen-Hsun Hsu