Patents by Inventor Chien-Wei Lee

Chien-Wei Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965702
    Abstract: A low pressure drop automotive liquid-cooling heat dissipation plate and an enclosed automotive liquid-cooling cooler having the same are provided. The low pressure drop automotive liquid-cooling heat dissipation plate includes a heat dissipation plate body and three fin sets. The heat dissipation plate body has a first heat dissipation surface and a second heat dissipation surface that are opposite to each other. The first heat dissipation surface is in contact with three traction inverter power component sets, and the second heat dissipation surface is in contact with a cooling fluid. Three heat dissipation regions that are spaced equidistantly apart from each other and that have a same size are defined on the second heat dissipation surface along a flow direction of the cooling fluid, and respectively correspond to three projection areas formed by projecting three traction inverter power component sets on the second heat dissipation surface.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: April 23, 2024
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Chun-Li Hsiung, Kuo-Wei Lee, Chien-Cheng Wu, Chun-Lung Wu
  • Publication number: 20240128232
    Abstract: A semiconductor package includes a first semiconductor die, an encapsulant, a high-modulus dielectric layer and a redistribution structure. The first semiconductor die includes a conductive post in a protective layer. The encapsulant encapsulates the first semiconductor die, wherein the encapsulant is made of a first material. The high-modulus dielectric layer extends on the encapsulant and the protective layer, wherein the high-modulus dielectric layer is made of a second material. The redistribution structure extends on the high-modulus dielectric layer, wherein the redistribution structure includes a redistribution dielectric layer, and the redistribution dielectric layer is made of a third material. The protective layer is made of a fourth material, and a ratio of a Young's modulus of the second material to a Young's modulus of the fourth material is at least 1.5.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Ding Wang, Yen-Fu Su, Hao-Cheng Hou, Jung-Wei Cheng, Chien-Hsun Lee, Hsin-Yu Pan
  • Publication number: 20240116356
    Abstract: A vehicle water-cooling heat sink plate having fin sets with different fin pitch distances is provided. The vehicle water-cooling heat sink plate includes a heat-dissipating plate body and three fin sets. The heat-dissipating plate body has a first heat-dissipating surface and a second heat-dissipating surface that are opposite to each other, the first heat-dissipating surface is used for contacting three traction inverter power component sets, and the second heat-dissipating surface is used for contacting a cooling fluid. The second heat-dissipating surface of the heat-dissipating plate body along a flow direction of the cooling fluid is divided into three heat-dissipating areas which are spaced apart from each other and have the same size, and the three heat-dissipating areas respectively correspond to three projection areas that are respectively generated by the three traction inverter power component sets.
    Type: Application
    Filed: October 11, 2022
    Publication date: April 11, 2024
    Inventors: KUO-WEI LEE, CHUN-LI HSIUNG, CHIEN-CHENG WU, CHUN-LUNG WU
  • Publication number: 20240121913
    Abstract: A vehicle water-cooling heat sink plate having fin sets with different surface areas is provided. The vehicle water-cooling heat sink plate includes a heat-dissipating plate body and three fin sets. The heat-dissipating plate body has a first heat-dissipating surface and a second heat-dissipating surface that are opposite to each other, the first heat-dissipating surface is used for contacting three traction inverter power component sets, and the second heat-dissipating surface is used for contacting a cooling fluid. The second heat-dissipating surface of the heat-dissipating plate body along a flow direction of the cooling fluid is divided into three heat-dissipating areas which are spaced apart from each other and have the same size, and the three heat-dissipating areas respectively correspond to three projection areas that are respectively generated by the three traction inverter power component sets.
    Type: Application
    Filed: October 11, 2022
    Publication date: April 11, 2024
    Inventors: CHUN-LI HSIUNG, KUO-WEI LEE, CHUN-LUNG WU, CHIEN-CHENG WU
  • Patent number: 11942550
    Abstract: A method for manufacturing a nanosheet semiconductor device includes forming a poly gate on a nanosheet stack which includes at least one first nanosheet and at least one second nanosheet alternating with the at least one first nanosheet; recessing the nanosheet stack to form a source/drain recess proximate to the poly gate; forming an inner spacer laterally covering the at least one first nanosheet; and selectively etching the at least one second nanosheet.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-Chang Su, Yan-Ting Lin, Chien-Wei Lee, Bang-Ting Yan, Chih Teng Hsu, Chih-Chiang Chang, Chien-I Kuo, Chii-Horng Li, Yee-Chia Yeo
  • Publication number: 20240088179
    Abstract: A chip packaging structure and a chip packaging method are provided. The chip packaging structure includes a first substrate, an image sensing chip, a supporting member, a second substrate, and an encapsulant. The image sensing chip is disposed on an upper surface of the first substrate, and the image sensing chip has an image sensing region. The supporting member is disposed on an upper surface of the image sensing chip and surrounds the image sensing region. The supporting member is formed by stacking microstructures with each other, so that the supporting member has pores. The second substrate is disposed on an upper surface of the supporting member, and the second substrate, the supporting member, and the image sensing chip define an air cavity. The encapsulant is attached to the upper surface of the first substrate and a side surface of the second substrate and filled into the pores.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 14, 2024
    Applicant: TONG HSING ELECTRONIC INDUSTRIES, LTD.
    Inventors: You-Wei Chang, Chien-Chen Lee, Li-Chun Hung
  • Publication number: 20240090234
    Abstract: A magnetoresistive random access memory (MRAM) includes a first transistor and a second transistor on a substrate, a source line coupled to a first source/drain region of the first transistor, and a first metal interconnection coupled to a second source/drain region of the first transistor. Preferably, the first metal interconnection is extended to overlap the first transistor and the second transistor and the first metal interconnection further includes a first end coupled to the second source/drain region of the first transistor and a second end coupled to a magnetic tunneling junction (MTJ).
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Te-Wei Yeh, Chien-Liang Wu
  • Publication number: 20240088042
    Abstract: A semiconductor structure includes a dielectric layer over a substrate, a via conductor over the substrate and in the dielectric layer, and a first graphene layer disposed over the via conductor. In some embodiments, a top surface of the via conductor and a top surface of the dielectric layer are level. In some embodiments, the first graphene layer overlaps the via conductor from a top view. In some embodiments, the semiconductor structure further includes a second graphene layer under the via conductor and a third graphene layer between the dielectric layer and the via conductor. In some embodiments, the second graphene layer is between the substrate and the via conductor.
    Type: Application
    Filed: January 11, 2023
    Publication date: March 14, 2024
    Inventors: SHU-WEI LI, HAN-TANG HUNG, YU-CHEN CHAN, CHIEN-HSIN HO, SHIN-YI YANG, MING-HAN LEE, SHAU-LIN SHUE
  • Patent number: 11929398
    Abstract: Present disclosure provides a FinFET structure, including a substrate, a fin protruding from the substrate, including a first portion and a second portion below the first portion, wherein the first portion includes a first dopant concentration of a dopant, and the second portion includes a second dopant concentration of the dopant, the second dopant concentration is greater than the first dopant concentration, a gate over the fin, wherein the second portion of the fin is below a bottom surface of the gate, and an insulating layer over the substrate and proximal to the second portion of the fin, wherein at least a first portion of the insulating layer includes a third dopant concentration of the dopant, the third dopant concentration is greater than the first dopant concentration.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun Hsiung Tsai, Lai-Wan Chong, Chien-Wei Lee, Kei-Wei Chen
  • Patent number: 11929401
    Abstract: Embodiments provide a way of treating source/drain recesses with a high heat treatment and an optional hydrogen plasma treatment. The high heat treatment smooths the surfaces inside the recesses and remove oxides and etching byproducts. The hydrogen plasma treatment enlarges the recesses vertically and horizontally and inhibits further oxidation of the surfaces in the recesses.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Wei Lee, Hsueh-Chang Sung, Yen-Ru Lee
  • Publication number: 20240079346
    Abstract: An electronic component includes a board, an electronic device, and a stiffening structure is provided. The electronic device is disposed on the board. The stiffening structure is disposed on the board. The stiffening structure includes a ring portion corresponding the edge of the board. The stiffening structure includes a core base and a cladding layer. The cladding layer covers the core base.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Yang Yu, Jung-Wei Cheng, Yu-Min Liang, Chien-Hsun Lee
  • Publication number: 20240077564
    Abstract: A method of using NC-MRA to generate pelvic veins images and measure rate of blood flow includes subjecting a lay patient to undergo magnetic resonance scan in cooperation with an ECG monitor and a respiration monitor; scanning coronary sections and transverse sections of kidney veins, lower cavity veins, common iliac veins, and external iliac veins to generate two-dimensional images wherein the two-dimensional images use balanced turbo field echo wave sequence; scanning coronary sections of common cardinal veins of abdominal cavity to generate three-dimensional images wherein the three-dimensional images use fast spin-echo short tau inversion recovery wave sequence and sample signals when the ECG monitor monitors myocardial contractility; and using quantification phase-contrast analysis to measure blood flowing through the transverse sections of the veins in a two-dimensional scan.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Applicant: Chang Gung Memorial Hospital, Chiayi
    Inventors: Chien-Wei Chen, Yao-Kuang Huang, Chung-Yuan Lee, Yeh-Giin Ngo, Yin-Chen Hsu
  • Publication number: 20240071947
    Abstract: A semiconductor package including a ring structure with one or more indents and a method of forming are provided. The semiconductor package may include a substrate, a first package component bonded to the substrate, wherein the first package component may include a first semiconductor die, a ring structure attached to the substrate, wherein the ring structure may encircle the first package component in a top view, and a lid structure attached to the ring structure. The ring structure may include a first segment, extending along a first edge of the substrate, and a second segment, extending along a second edge of the substrate. The first segment and the second segment may meet at a first corner of the ring structure, and a first indent of the ring structure may be disposed at the first corner of the ring structure.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Yu-Ling Tsai, Lai Wei Chih, Meng-Tsan Lee, Hung-Pin Chang, Li-Han Hsu, Chien-Chia Chiu, Cheng-Hung Lin
  • Publication number: 20240071999
    Abstract: A first polymer layer is formed across a package region and a test region. A first metal pattern is formed in the package region and a first test pattern is simultaneously formed in the test region. The first metal pattern has an upper portion located on the first polymer layer and a lower portion penetrating through the first polymer layer, and the first test pattern is located on the first polymer layer and has a first opening exposing the first polymer layer. A second polymer layer is formed on the first metal pattern in the package region and a second test pattern is simultaneously formed on the first test pattern in the test region. The second polymer layer has a second opening exposing the upper portion of the first metal pattern, and the second test pattern has a third opening greater than the first opening of the first test pattern.
    Type: Application
    Filed: August 24, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tseng Hsing Lin, Chien-Hsun Lee, Tsung-Ding Wang, Jung-Wei Cheng, Hao-Cheng Hou, Sheng-Chi Lin, Jeng-An Wang, Yao-Cheng Wu
  • Publication number: 20240021738
    Abstract: A semiconductor structure including a substrate, a first well region, a second well region, an isolation, a gate structure, and a dielectric layer is provided. The first well region is disposed in the substrate, wherein a dopant of the first well region includes arsenic. The second well region is disposed in the substrate under the first well region, wherein the second well region has a conductivity type different from that of the first doping region. The isolation is disposed in the substrate and surrounds the first well region, wherein a depth of the isolation is substantially greater than or equal to a depth of the first well region from a first surface of the substrate. The gate structure are disposed sequentially over the substrate and overlaps the first well region. A method of forming the semiconductor structure is also provided.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 18, 2024
    Inventors: ANHAO CHENG, CHING-HUNG KAO, YEN-LIANG LIN, MENG-I KANG, KAI-CHI WU, CHIEN-WEI LEE
  • Publication number: 20240021618
    Abstract: A method includes forming first devices in a first region of a substrate, wherein each first device has a first number of fins; forming second devices in a second region of the substrate that is different from the first region, wherein each second device has a second number of fins that is different from the first number of fins; forming first recesses in the fins of the first devices, wherein the first recesses have a first depth; after forming the first recesses, forming second recesses in the fins of the second devices, wherein the second recesses have a second depth different from the first depth; growing a first epitaxial source/drain region in the first recesses; and growing a second epitaxial source/drain region in the second recess.
    Type: Application
    Filed: August 1, 2023
    Publication date: January 18, 2024
    Inventors: Chih-Yun Chin, Yen-Ru Lee, Chien-Chang Su, Yan-Ting Lin, Chien-Wei Lee, Bang-Ting Yan, Heng-Wen Ting, Chii-Horng Li, Yee-Chia Yeo
  • Publication number: 20230275153
    Abstract: A semiconductor device including a source/drain region having a V-shaped bottom surface and extending below gate spacers adjacent a gate stack and a method of forming the same are disclosed. In an embodiment, a method includes forming a gate stack over a fin; forming a gate spacer on a sidewall of the gate stack; etching the fin with a first anisotropic etch process to form a first recess adjacent the gate spacer; etching the fin with a second etch process using etchants different from the first etch process to remove an etching residue from the first recess; etching surfaces of the first recess with a third anisotropic etch process using etchants different from the first etch process to form a second recess extending below the gate spacer and having a V-shaped bottom surface; and epitaxially forming a source/drain region in the second recess.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 31, 2023
    Inventors: Chien-Wei Lee, Hsueh-Chang Sung, Yen-Ru Lee, Jyun-Chih Lin, Tzu-Hsiang Hsu, Feng-Cheng Yang
  • Patent number: 11735668
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a substrate. A fin is on the substrate. The fin includes silicon germanium. An interfacial layer is over the fin. The interfacial layer has a thickness in a range from greater than 0 nm to about 4 nm. A source/drain region is over the interfacial layer. The source/drain region includes silicon germanium.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: August 22, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yun Chin, Chii-Horng Li, Chien-Wei Lee, Hsueh-Chang Sung, Heng-Wen Ting, Roger Tai, Pei-Ren Jeng, Tzu-Hsiang Hsu, Yen-Ru Lee, Yan-Ting Lin, Davie Liu
  • Publication number: 20230231014
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a base and a fin structure over the base. The semiconductor device structure includes an isolation structure over the base and surrounding a lower portion of the fin structure. The semiconductor device structure includes a gate stack wrapped around an upper portion of the fin structure. The semiconductor device structure includes a source/drain structure partially embedded in the isolation structure and the lower portion of the fin structure. The source/drain structure has an undoped semiconductor layer and a first doped layer over the undoped semiconductor layer, and the undoped semiconductor layer separates the first doped layer from the isolation structure.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 20, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Wei LEE, Yen-Ting CHEN, Wei-Yang LEE, Chia-Pin LIN
  • Publication number: 20230187540
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a fin structure over the substrate, a gate structure over the fin structure, an epitaxial region formed in the fin structure and adjacent to the gate structure. The epitaxial region can embed a plurality of clusters of dopants.
    Type: Application
    Filed: February 6, 2023
    Publication date: June 15, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Wei Lee, Chii-Horng Li, Heng-Wen Ting, Yee-Chia Yeo, Yen-Ru Lee, Chih-Yun Chin, Chih-Hung Nien, Jing-Yi Yan