Patents by Inventor Chih-Chao CHOU

Chih-Chao CHOU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916125
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises a dielectric layer formed over a conductive feature; a semiconductor stack formed over the dielectric layer, wherein the semiconductor stack including semiconductor layers stacked up and separated from each other; a first metal gate structure and a second metal gate structure formed over a channel region of the semiconductor stack, wherein the first metal gate structure and the second metal gate structure wrap each of the semiconductor layers of the semiconductor stack; and a first epitaxial feature disposed between the first metal gate structure and the second metal gate structure over a first source/drain region of the semiconductor stack, wherein the first epitaxial feature extends through the dielectric layer and contacts the conductive feature.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: February 27, 2024
    Inventors: Chih-Chao Chou, Kuo-Cheng Chiang, Shi Ning Ju, Wen-Ting Lan, Chih-Hao Wang
  • Publication number: 20240063125
    Abstract: Nanostructure field-effect transistors (nano-FETs) including isolation layers formed between epitaxial source/drain regions and semiconductor substrates and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a power rail, a dielectric layer over the power rail, a first channel region over the dielectric layer, a second channel region over the first channel region, a gate stack over the first channel region and the second channel region, where the gate stack is further disposed between the first channel region and the second channel region and a first source/drain region adjacent the gate stack and electrically connected to the power rail.
    Type: Application
    Filed: November 1, 2023
    Publication date: February 22, 2024
    Inventors: Kuo-Cheng Chiang, Shi Ning Ju, Chih-Chao Chou, Wen-Ting Lan, Chih-Hao Wang
  • Patent number: 11855178
    Abstract: A semiconductor device is provided. The semiconductor device includes a fin protruding from a semiconductor substrate and a gate structure formed across the fin. The semiconductor device also includes a gate spacer formed over a sidewall of the gate structure. The gate spacer includes a sidewall spacer and a sealing spacer formed above the sidewall spacer. In addition, an air gap is vertically sandwiched between the sidewall spacer and the sealing spacer. The semiconductor device further includes a hard mask formed over the gate structure and covering a sidewall of the sealing spacer.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hsiung Lin, Pei-Hsun Wang, Chih-Chao Chou, Chia-Hao Chang, Chih-Hao Wang
  • Patent number: 11842965
    Abstract: Nanostructure field-effect transistors (nano-FETs) including isolation layers formed between epitaxial source/drain regions and semiconductor substrates and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a power rail, a dielectric layer over the power rail, a first channel region over the dielectric layer, a second channel region over the first channel region, a gate stack over the first channel region and the second channel region, where the gate stack is further disposed between the first channel region and the second channel region and a first source/drain region adjacent the gate stack and electrically connected to the power rail.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Chiang, Shi Ning Ju, Chih-Chao Chou, Wen-Ting Lan, Chih-Hao Wang
  • Publication number: 20230386936
    Abstract: A semiconductor structure includes a fin disposed on a substrate, the fin including a channel region comprising a plurality of channels vertically stacked over one another, the channels comprising germanium distributed therein. The semiconductor structure further includes a gate stack engaging the channel region of the fin and gate spacers disposed between the gate stack and the source and drain regions of the fin, wherein each channel of the channels includes a middle section wrapped around by the gate stack and two end sections engaged by the gate spacers, wherein a concentration of germanium in the middle section of the channel is higher than a concentration of germanium in the two end sections of the channel, and wherein the middle section of the channel further includes a core portion and an outer portion surrounding the core portion with a germanium concentration profile from the core portion to the outer portion.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 30, 2023
    Inventors: Wei-Sheng Yun, Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Chiang, Chih-Chao Chou, Chun-Hsiung Lin, Pei-Hsun Wang
  • Publication number: 20230369196
    Abstract: Semiconductor devices and methods are provided. A method according to the present disclosure includes receiving a substrate that includes a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer; forming a plurality of fins over the third semiconductor layer; forming a trench between two of the plurality of fins; depositing a dummy material in the trench; forming a gate structure over channel regions of the plurality of the fins; forming source/drain features over source/drain regions of the plurality of the fins; bonding the substrate on a carrier wafer; removing the first and second semiconductor layers to expose the dummy material; removing the dummy material in the trench; depositing a conductive material in the trench; and bonding the substrate to a silicon substrate such that the conductive material is in contact with the silicon substrate. The trench extends through the third semiconductor layer and has a bottom surface on the second semiconductor layer.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Chih-Chao Chou, Kuo-Cheng Chiang, Shi Ning Ju, Wen-Ting Lan, Chih-Hao Wang
  • Patent number: 11776854
    Abstract: Semiconductor structures and methods for forming the same are provided. The semiconductor device includes a fin protruding from a substrate and an isolation structure surrounding the fin. The semiconductor device also includes a first channel layer and a second channel layer formed over the fin and at least partially overlapping the isolation structure. The semiconductor device further includes a gate structure formed in a space between the first channel layer and the second channel layer and wrapping around the first channel layer and the second channel layer.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Hsun Wang, Chun-Hsiung Lin, Chih-Hao Wang, Chih-Chao Chou
  • Patent number: 11742280
    Abstract: Semiconductor devices and methods are provided. A method according to the present disclosure includes receiving a substrate that includes a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer; forming a plurality of fins over the third semiconductor layer; forming a trench between two of the plurality of fins; depositing a dummy material in the trench; forming a gate structure over channel regions of the plurality of the fins; forming source/drain features over source/drain regions of the plurality of the fins; bonding the substrate on a carrier wafer; removing the first and second semiconductor layers to expose the dummy material; removing the dummy material in the trench; depositing a conductive material in the trench; and bonding the substrate to a silicon substrate such that the conductive material is in contact with the silicon substrate. The trench extends through the third semiconductor layer and has a bottom surface on the second semiconductor layer.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chao Chou, Kuo-Cheng Chiang, Shi Ning Ju, Wen-Ting Lan, Chih-Hao Wang
  • Patent number: 11721594
    Abstract: A semiconductor structure includes a fin disposed on a substrate, the fin including a channel region comprising a plurality of channels vertically stacked over one another, the channels comprising germanium distributed therein. The semiconductor structure further includes a gate stack engaging the channel region of the fin and gate spacers disposed between the gate stack and the source and drain regions of the fin, wherein each channel of the channels includes a middle section wrapped around by the gate stack and two end sections engaged by the gate spacers, wherein a concentration of germanium in the middle section of the channel is higher than a concentration of germanium in the two end sections of the channel, and wherein the middle section of the channel further includes a core portion and an outer portion surrounding the core portion with a germanium concentration profile from the core portion to the outer portion.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: August 8, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Wei-Sheng Yun, Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Chiang, Chih-Chao Chou, Chun-Hsiung Lin, Pei-Hsun Wang
  • Patent number: 11695076
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor fin disposed over a substrate, an isolation structure at least partially surrounding the fin, an epitaxial source/drain (S/D) feature disposed over the semiconductor fin, where an extended portion of the epitaxial S/D feature extends over the isolation structure, and a silicide layer disposed on the epitaxial S/D feature, where the silicide layer covers top, bottom, sidewall, front, and back surfaces of the extended portion of the S/D feature.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Hsun Wang, Chih-Chao Chou, Shih-Cheng Chen, Jung-Hung Chang, Jui-Chien Huang, Chun-Hsiung Lin, Chih-Hao Wang
  • Publication number: 20230145872
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor fin disposed over a substrate, an isolation structure at least partially surrounding the fin, an epitaxial source/drain (S/D) feature disposed over the semiconductor fin, where an extended portion of the epitaxial S/D feature extends over the isolation structure, and a silicide layer disposed on the epitaxial S/D feature, where the silicide layer covers top, bottom, sidewall, front, and back surfaces of the extended portion of the S/D feature.
    Type: Application
    Filed: December 14, 2022
    Publication date: May 11, 2023
    Inventors: Pei-Hsun Wang, Chih-Chao Chou, Shih-Cheng Chen, Jung-Hung Chang, Jui-Chien Huang, Chun-Hsiung Lin, Chih-Hao Wang
  • Patent number: 11563104
    Abstract: A semiconductor device is provided. The semiconductor device includes a fin protruding from a semiconductor substrate and a gate structure over the fin. The semiconductor device also includes a source region and a drain region in the fin and at opposite sides of the gate structure. The semiconductor device further includes a gate spacer on a sidewall of the gate structure. The gate spacer includes an air-gap spacer and a sealing spacer above the air-gap spacer, an upper portion of the gate structure is laterally overlapping with the sealing spacer, and the bottom portion of the gate structure is laterally overlapping with the air gap spacer.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: January 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hsiung Lin, Pei-Hsun Wang, Chih-Chao Chou, Chia-Hao Chang, Chih-Hao Wang
  • Publication number: 20230013764
    Abstract: Semiconductor devices including backside capacitors and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a first transistor structure; a front-side interconnect structure on a front-side of the first transistor structure, the front-side interconnect structure including a front-side conductive line; a backside interconnect structure on a backside of the first transistor structure, the backside interconnect structure including a backside conductive line, the backside conductive line having a line width greater than a line width of the front-side conductive line; and a first capacitor structure coupled to the backside interconnect structure.
    Type: Application
    Filed: March 1, 2022
    Publication date: January 19, 2023
    Inventors: Chih-Chao Chou, Yi-Hsun Chiu, Shang-Wen Chang, Ching-Wei Tsai, Chih-Hao Wang, Min Cao
  • Publication number: 20230009640
    Abstract: Semiconductor devices and methods are provided which facilitate performing physical failure analysis (PFA) testing from a backside of the devices. In at least one example, a device is provided that includes a semiconductor device layer including a plurality of diffusion regions. A first interconnection structure is disposed on a first side of the semiconductor device layer, and the first interconnection structure includes at least one electrical contact. A second interconnection structure is disposed on a second side of the semiconductor device layer, and the second interconnection structure includes a plurality of backside power rails. Each of the backside power rails at least partially overlaps a respective diffusion region of the plurality of diffusion regions and defines openings which expose portions of the respective diffusion region at the second side of the semiconductor device layer.
    Type: Application
    Filed: May 6, 2022
    Publication date: January 12, 2023
    Inventors: Chih-Chao CHOU, Yi-Hsun CHIU, Shang-Wen CHANG, Ching-Wei TSAI, Chih-Hao WANG
  • Patent number: 11532521
    Abstract: A semiconductor structure includes a first fin, which includes a first plurality of suspended nanostructures vertically stacked over one another, each of the first plurality of suspended nanostructure having a center portion that has a first cross section, and a second fin, which includes a second plurality of suspended nanostructures vertically stacked over one another, the first plurality of suspended nanostructures and the second plurality of suspended nanostructures having different material compositions, each of the second plurality of suspended nanostructure having a center portion that has a second cross section, wherein a shape or an area of the first cross section is different from that of the second cross section.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Sheng Yun, Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Chiang, Chih-Chao Chou, Chun-Hsiung Lin, Pei-Hsun Wang
  • Publication number: 20220367668
    Abstract: A semiconductor device is provided. The semiconductor device includes a fin protruding from a semiconductor substrate and a gate structure formed across the fin. The semiconductor device also includes a gate spacer formed over a sidewall of the gate structure. The gate spacer includes a sidewall spacer and a sealing spacer formed above the sidewall spacer. In addition, an air gap is vertically sandwiched between the sidewall spacer and the sealing spacer. The semiconductor device further includes a hard mask formed over the gate structure and covering a sidewall of the sealing spacer.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hsiung LIN, Pei-Hsun WANG, Chih-Chao CHOU, Chia-Hao CHANG, Chih-Hao WANG
  • Publication number: 20220359699
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises a dielectric layer formed over a conductive feature; a semiconductor stack formed over the dielectric layer, wherein the semiconductor stack including semiconductor layers stacked up and separated from each other; a first metal gate structure and a second metal gate structure formed over a channel region of the semiconductor stack, wherein the first metal gate structure and the second metal gate structure wrap each of the semiconductor layers of the semiconductor stack; and a first epitaxial feature disposed between the first metal gate structure and the second metal gate structure over a first source/drain region of the semiconductor stack, wherein the first epitaxial feature extends through the dielectric layer and contacts the conductive feature.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 10, 2022
    Inventors: Chih-Chao Chou, Kuo-Cheng Chiang, Shi Ning Ju, Wen-Ting Lan, Chih-Hao Wang
  • Publication number: 20220344254
    Abstract: Semiconductor devices and methods are provided. A method according to the present disclosure includes receiving a substrate that includes a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer; forming a plurality of fins over the third semiconductor layer; forming a trench between two of the plurality of fins; depositing a dummy material in the trench; forming a gate structure over channel regions of the plurality of the fins; forming source/drain features over source/drain regions of the plurality of the fins; bonding the substrate on a carrier wafer; removing the first and second semiconductor layers to expose the dummy material; removing the dummy material in the trench; depositing a conductive material in the trench; and bonding the substrate to a silicon substrate such that the conductive material is in contact with the silicon substrate. The trench extends through the third semiconductor layer and has a bottom surface on the second semiconductor layer.
    Type: Application
    Filed: July 8, 2022
    Publication date: October 27, 2022
    Inventors: Chih-Chao Chou, Kuo-Cheng Chiang, Shi Ning Ju, Wen-Ting Lan, Chih-Hao Wang
  • Publication number: 20220328363
    Abstract: Methods of forming dual-side super power rails in semiconductor devices, semiconductor devices including the same, and methods of testing the semiconductor devices are disclosed. In an embodiment, a device includes a transistor structure; a front-side interconnect structure on a front side of the transistor structure; and a back-side interconnect structure on a back side of the transistor structure. The front-side interconnect structure includes a front-side power delivery network (PDN) and a front-side input/output (I/O) pin. The back-side interconnect structure includes a back-side PDN.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 13, 2022
    Inventors: Chih-Chao Chou, Yi-Hsun Chiu, Shang-Wen Chang, Ching-Wei Tsai, Chih-Hao Wang
  • Publication number: 20220301943
    Abstract: A semiconductor structure includes a fin disposed on a substrate, the fin including a channel region comprising a plurality of channels vertically stacked over one another, the channels comprising germanium distributed therein. The semiconductor structure further includes a gate stack engaging the channel region of the fin and gate spacers disposed between the gate stack and the source and drain regions of the fin, wherein each channel of the channels includes a middle section wrapped around by the gate stack and two end sections engaged by the gate spacers, wherein a concentration of germanium in the middle section of the channel is higher than a concentration of germanium in the two end sections of the channel, and wherein the middle section of the channel further includes a core portion and an outer portion surrounding the core portion with a germanium concentration profile from the core portion to the outer portion.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 22, 2022
    Inventors: Wei-Sheng Yun, Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Chiang, Chih-Chao Chou, Chun-Hsiung Lin, Pei-Hsun Wang