Patents by Inventor Chih-Chiang Lu

Chih-Chiang Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10802189
    Abstract: A wire grid polarizer and a display panel using the same are provided. The wire grid polarizer includes a substrate, a plurality of wire grids, a plurality of patterned light absorbing layers, and a surface covering layer. The plurality of wire grids are disposed on the substrate, wherein there are a plurality of gaps between every two wire grids. The plurality of patterned light absorbing layers are disposed corresponding to and overlapping the wire grids respectively, wherein every two of the patterned light absorbing layers have one of the gaps. The surface covering layer is disposed on the patterned light absorbing layers and directly contacts the patterned light absorbing layers.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 13, 2020
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Huang-Kai Shen, Sheng-Ming Huang, Jen-Kuei Lu, Chih-Chiang Chen, Hui-Ku Chang, Tsai-Sheng Lo, Chia-Hsin Chung, Wei-Chi Wang, Sheng-Kai Lin, Ming-Jui Wang
  • Publication number: 20200287075
    Abstract: The present disclosure provides a light-emitting device comprising a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first top surface separated from the topmost surface by a first distance; a first bonding layer arranged between the substrate and the first semiconductor stack; a second semiconductor stack arranged on the substrate, and comprising a second top surface separated from the topmost surface by a second distance which is different form the first distance; a second bonding layer arranged between the substrate and the second semiconductor stack; a third semiconductor stack arranged on the substrate, and comprising third top surface separated from the topmost surface by a third distance; and a third bonding layer arranged between the substrate and the third semiconductor stack; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Inventors: Chien-Fu HUANG, Chih-Chiang LU, Chun-Yu LIN, Hsin-Chih CHIU
  • Patent number: 10756960
    Abstract: A light-emitting device comprises a first light-emitting semiconductor stack comprising a first active layer; a second light-emitting semiconductor stack below the first light-emitting semiconductor stack, wherein the second light-emitting semiconductor stack comprises a second active layer; a reflector between the first light-emitting semiconductor stack and the second light-emitting semiconductor stack; a protecting layer between the reflector and the second light-emitting semiconductor stack; and wherein the first light-emitting semiconductor stack further comprises a first semiconductor layer and a second semiconductor layer sandwiching the first active layer, the second light-emitting semiconductor stack further comprises a third semiconductor layer and a fourth semiconductor layer sandwiching the second active layer, wherein the second semiconductor layer has a first band gap, the third semiconductor layer has a second band gap, and the protecting layer has a third band gap between the first band gap an
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 25, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Chih-Chiang Lu, Yi-Chieh Lin, Wen-Luh Liao, Shou-Lung Chen, Chien-Fu Huang
  • Patent number: 10742699
    Abstract: Techniques for low latency streaming, for example in a broadcasting environment, are described herein. In some examples, a playlist may include both currently encoded segments, which are segments that are fully encoded at or before playlist generation, and also future encoded segments, which are segments that have not yet been fully encoded at playlist generation. In some cases, the inclusion of future encoded segments in a playlist may result in a player requesting a segment that has not yet been fully encoded at the time that the request is received by the server. In some examples, even though the segment is not yet fully encoded, the server may nevertheless save and process the request, for example by transmitting encoded portions of the requested segment as those portions are made available by the encoder.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 11, 2020
    Assignee: Twitch Interactive, Inc.
    Inventors: Yueshi Shen, Martin Hess, Shawn Hsu, Eran Ambar, Abhinav Kapoor, Jorge Arturo Villatoro, Spencer Nelson, Jeffrey Garneau, Cyrus Hall, Jyotindra Vasudeo, Andrew Francis, Yuechuan Li, Chih-Chiang Lu
  • Patent number: 10735783
    Abstract: Techniques for low latency streaming, for example in a broadcasting environment, are described herein. In some examples, one or more individual renditions may be encoded into multiple rendition versions associated with different respective latencies. Also, in some examples, one or more individual renditions may be encoded into multiple rendition versions having different respective amounts of forward error correction (FEC), for example by an edge node of a video streaming service. Also, in some examples, video may be broadcast using a protocol that does not require retransmission of lost packets, such as Web Real-Time Communication (WebRTC), which is commonly used for point-to-point transmissions. Also, in some examples, one or more servers may receive quality of service feedback information from each player to which video content is transmitted. The one or more servers may use this feedback information to select and switch between appropriate renditions and rendition versions for each player.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 4, 2020
    Assignee: Twitch Interactive, Inc.
    Inventors: Yueshi Shen, Martin Hess, Shawn Hsu, Eran Ambar, Abhinav Kapoor, Jorge Arturo Villatoro, Spencer Nelson, Jeffrey Garneau, Cyrus Hall, Jyotindra Vasudeo, Andrew Francis, Yuechuan Li, Chih-Chiang Lu
  • Patent number: 10680133
    Abstract: The present disclosure provides a light-emitting device comprises a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first light-emitting layer separated from the topmost surface by a first distance; a second semiconductor stack arranged on the substrate, and comprising a second light-emitting layer separated from the topmost surface by a second distance; and a third semiconductor stack arranged on the substrate, and comprising third light-emitting layer separated from the topmost surface by a third distance; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights; and wherein the second distance is different form the first distance and the third distance.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: June 9, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Chien-Fu Huang, Chih-Chiang Lu, Chun-Yu Lin, Hsin-Chih Chiu
  • Publication number: 20200133061
    Abstract: A polarizer substrate includes a substrate, an organic planarization layer, an inorganic buffer layer, and a plurality of strip-shaped polarizer structures. The organic planarization layer is located on the substrate. The inorganic buffer layer is located on the organic planarization layer. The inorganic buffer layer has a plurality of trenches located on a first surface. The trenches do not penetrate through the inorganic buffer layer. The strip-shaped polarizer structures are located on the first surface of the inorganic buffer layer. Each of the trenches is located between two adjacent polarizer structures. A display panel is also provided.
    Type: Application
    Filed: May 9, 2019
    Publication date: April 30, 2020
    Applicant: Au Optronics Corporation
    Inventors: Tsai-Sheng Lo, Chih-Chiang Chen, Ming-Jui Wang, Sheng-Kai Lin, Sheng-Ming Huang, Chia-Hsin Chung, Hui-Ku Chang, Wei-Chi Wang, Jen-Kuei Lu
  • Patent number: 10630746
    Abstract: Techniques for low latency streaming, for example in a broadcasting environment, are described herein. In some examples, a playlist may include both currently encoded segments, which are segments that are fully encoded at or before playlist generation, and also future encoded segments, which are segments that have not yet been fully encoded at playlist generation. In some cases, the inclusion of future encoded segments in a playlist may result in a player requesting a segment that has not yet been fully encoded at the time that the request is received by the server. In some examples, even though the segment is not yet fully encoded, the server may nevertheless save and process the request, for example by transmitting encoded portions of the requested segment as those portions are made available by the encoder.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: April 21, 2020
    Assignee: Twitch Interactive, Inc.
    Inventors: Yueshi Shen, Martin Hess, Shawn Hsu, Eran Ambar, Abhinav Kapoor, Jorge Arturo Villatoro, Spencer Nelson, Jeffrey Garneau, Cyrus Hall, Jyotindra Vasudeo, Andrew Francis, Yuechuan Li, Chih-Chiang Lu
  • Publication number: 20200106156
    Abstract: An electronic device and a manufacturing method thereof are provided. The electronic device includes a chip package, an antenna pattern, and an insulating layer. The chip package includes a semiconductor die and an insulating encapsulation enclosing the semiconductor die. The antenna pattern is electrically coupled to the chip package, where a material of the antenna pattern comprises a conductive powder having fused metal particles. The insulating layer disposed between the chip package and the antenna pattern, where the antenna pattern includes a first surface in contact with the insulating layer, and a second surface opposite to the first surface, and a surface roughness of the second surface is greater than a surface roughness of the first surface.
    Type: Application
    Filed: April 18, 2019
    Publication date: April 2, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Lin Lu, Hsiu-Jen Lin, Hsuan-Ting Kuo, Kai-Chiang Wu, Ming-Che Ho, Wei-Yu Chen, Yu-Peng Tsai, Chia-Lun Chang, Chia-Shen Cheng, Chih-Chiang Tsao, Tzu-Chun Tang, Ching-Hua Hsieh, Tuan-Yu Hung, Cheng-Shiuan Wong
  • Publication number: 20200103572
    Abstract: A polarizer substrate and manufacturing method thereof are provided. The polarizer substrate includes a substrate, a plurality of polarizer structures, a plurality of barrier structures, and a passivation layer. The polarizer structures are disposed on the substrate. Each of the polarizer structures includes a wire-grid and a capping structure disposed on the wire-grid. The barrier structures are disposed on the capping structures and not contacting with the side walls of the wire-grids. A gap between two adjacent barrier structures is smaller than a gap between two adjacent wire-grids. The passivation layer is disposed on the barrier structures.
    Type: Application
    Filed: May 14, 2019
    Publication date: April 2, 2020
    Applicant: Au Optronics Corporation
    Inventors: Wei-Chi Wang, Chih-Chiang Chen, Tsai-Sheng Lo, Sheng-Kai Lin, Chia-Hsin Chung, Hui-Ku Chang, Ming-Jui Wang, Sheng-Ming Huang, Jen-Kuei Lu
  • Patent number: 10600938
    Abstract: A light-emitting device includes: a light-emitting stack including a first active layer emitting a first light having a first peak wavelength; a diode emitting a second light having a second peak wavelength between 800 nm and 1900 nm; and a tunneling junction between the diode and the light-emitting stack, wherein the tunneling junction includes a first tunneling layer and a second tunneling layer on the first tunneling layer, the first tunneling layer has a band gap and a thickness of the first tunneling layer is greater than a thickness of the second tunneling layer.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: March 24, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Chih-Chiang Lu, Yi-Chieh Lin, Rong-Ren Lee, Yu-Ren Peng, Ming-Siang Huang, Ming-Ta Chin, Yi-Ching Lee
  • Publication number: 20200073258
    Abstract: An Equipment Front End Module (EFEM) having a Front Opening Unified Pod (FOUP) dock and a tool access port, includes a robotic wafer handling system configured to transfer silicon wafers between a FOUP coupled to the FOUP dock and a process tool positioned for access via the tool access port. An air curtain system inside the EFEM is positioned to produce an air curtain across the tool access port while the port is open, acting to isolate the interior of the EFEM from the tool environment, and prevent passage of airborne contaminants into the EFEM via the access port.
    Type: Application
    Filed: August 21, 2019
    Publication date: March 5, 2020
    Inventors: Chih-Chiang Chiu, Ding-I Liu, Yu-Ying Lu
  • Publication number: 20200066587
    Abstract: A method for forming a semiconductor device structure includes providing a substrate and forming a gate electrode on the substrate. A first contact structure is formed in and on the gate electrode. The first contact structure comprises a first portion and a second portion. The first portion is formed in the gate electrode, and the second portion is formed on the first portion.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Inventors: Guo-Chiang CHI, Chia-Der CHANG, Chih-Hung LU, Wei-Chin CHEN
  • Publication number: 20200066935
    Abstract: This disclosure discloses a light-emitting device. The light-emitting device includes a light-emitting stack having a first-type semiconductor layer, a second-type semiconductor layer, and an active layer formed between the first-type semiconductor layer and the second-type semiconductor layer; and a reflective structure formed on the first-type semiconductor layer and having a first interface and a second interface. A critical angle at the first interface for a light emitted from the light-emitting stack is larger than that at the second interface. The reflective structure electrically connects to the first-type semiconductor layer at the first interface, and an area of the first interface is more than an area of the second interface in a top view.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Inventors: Yi-Ming CHEN, Hao-Min KU, Chih-Chiang LU, Tzu-Chieh HSU
  • Patent number: 10553761
    Abstract: A light-emitting device includes a metal connecting structure; a metal reflective layer on the metal connecting structure; a barrier layer between the metal connecting structure and the metal reflective layer; a light-emitting stack on the metal reflective layer; a dielectric layer between the light-emitting stack and the metal reflective layer, and a first extension electrode and a second extension electrode on the light-emitting stack and away from the metal reflective layer. The dielectric layer includes a first part and a second part separated from the first part from a cross section of the light-emitting device. The first extension electrode and the second extension electrode respectively align with the first part and the second part. From a cross section of the light-emitting stack, the first extension electrode has a first width and the first part has a second width larger than the first width.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 4, 2020
    Assignee: Epistar Corporation
    Inventors: Fu Chun Tsai, Wen Luh Liao, Shih I Chen, Chia Liang Hsu, Chih Chiang Lu
  • Patent number: 10553747
    Abstract: A semiconductor device comprises a substrate, a first semiconductor unit on the substrate, and an first adhesion structure between the substrate and the first semiconductor unit, and directly contacting the first semiconductor unit and the substrate, wherein the first adhesion structure comprises an adhesion layer and a sacrificial layer, and the adhesion layer and the sacrificial layer are made of different materials, and wherein an adhesion between the first semiconductor unit and the adhesion layer is different from that between the first semiconductor unit and the sacrificial layer.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: February 4, 2020
    Assignee: Epistar Corporation
    Inventors: Chih-Chiang Lu, Yi-Ming Chen, Chun-Yu Lin, Ching-Pei Lin, Chung-Hsun Chien, Chien-Fu Huang, Hao-Min Ku, Min-Hsun Hsieh, Tzu-Chieh Hsu
  • Publication number: 20200006595
    Abstract: The present disclosure provides a light-emitting device and manufacturing method thereof. The light-emitting device comprising: a light-emitting stack; and a semiconductor layer having a first surface connecting to the light-emitting stack, a second surface opposite to the first surface, and a void; wherein the void comprises a bottom part near the first surface and an opening on the second surface, and a dimension of the bottom part is larger than the dimension of the opening.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: Wen-Luh LIAO, Chih-Chiang LU, Shih-Chang LEE, Hung-Ta CHENG, Hsin-Chan CHUNG, Yi-Chieh LIN
  • Patent number: 10511140
    Abstract: A light-emitting device is provided. The light-emitting device comprises: a substrate; and multiple radiation emitting regions arranged on the substrate, and comprising: a first radiation emitting region capable of emitting coherent light and emits a coherent light when driven by a first current; a second radiation emitting region capable of emitting coherent light and emits an incoherent light when driven by the first current, wherein each of the first radiation emitting region and the second emitting region comprises epitaxial structure comprising a first DBR stack, a light-emitting structure, and a second DBR stack.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 17, 2019
    Assignee: EPISTAR CORPORATION
    Inventors: Tzu-Chieh Hsu, Yi-Wen Huang, Yi-Hung Lin, Chih-Chiang Lu
  • Publication number: 20190341784
    Abstract: A battery charging system is provided, and includes a control unit, a charging unit, and a measurement unit. The control unit is configured to generate and output a control signal. The charging unit is coupled to the control unit and a battery. The charging unit is configured to receive the control signal, generate a charging current according to the control signal, and output the charging current to charge the battery. The measurement unit is coupled to the battery and the control unit. The measurement unit is configured to measure a battery voltage output by the battery, and output a measurement signal to the control unit. The measurement signal corresponds to the battery voltage.
    Type: Application
    Filed: March 4, 2019
    Publication date: November 7, 2019
    Inventors: Yi-Hsuan Lee, Hsueh-Cheng Lu, Shih-Feng Tseng, Chun-Wei Ko, Chih-Chiang Yu
  • Patent number: 10468299
    Abstract: A method for forming a semiconductor device structure includes providing a substrate and forming a gate electrode on the substrate. A first contact structure is formed in and on the gate electrode. The first contact structure comprises a first portion and a second portion. The first portion is formed in the gate electrode, and the second portion is formed on the first portion.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: November 5, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Guo-Chiang Chi, Chia-Der Chang, Chih-Hung Lu, Wei-Chin Chen