Patents by Inventor Chih-Chieh Yeh

Chih-Chieh Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10002969
    Abstract: A semiconductor device includes channel layers disposed over a substrate, a source/drain region disposed over the substrate, a gate dielectric layer disposed on and wrapping each of the channel layers, and a gate electrode layer disposed on the gate dielectric layer and wrapping each of the channel layers. Each of the channel layers includes a semiconductor wire made of a first semiconductor material. The semiconductor wire extends into the source/drain region. The semiconductor wire in the source/drain regions is wrapped around by a second semiconductor material.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: June 19, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Sheng Chen, Chih Chieh Yeh, Cheng-Hsien Wu
  • Publication number: 20180166327
    Abstract: In a method of forming a semiconductor device including a fin field effect transistor (FinFET), a first sacrificial layer is formed over a source/drain structure of a FinFET structure and an isolation insulating layer. The first sacrificial layer is patterned, thereby forming an opening. A first liner layer is formed on the isolation insulating layer in a bottom of opening and at least side faces of the patterned first sacrificial layer. After the first liner layer is formed, a dielectric layer is formed in the opening. After the dielectric layer is formed, the patterned first sacrificial layer is removed, thereby forming a contact opening over the source/drain structure. A conductive layer is formed in the contact opening.
    Type: Application
    Filed: June 12, 2017
    Publication date: June 14, 2018
    Inventors: Meng-Hsuan HSIAO, Yee-Chia YEO, Tung Ying LEE, Chih Chieh YEH
  • Patent number: 9997616
    Abstract: The present disclosure provides devices and methods which provide for strained epitaxial regions. A method of semiconductor fabrication is provided that includes forming a gate structure over a fin of a semiconductor substrate and forming a recess in the fin adjacent the gate structure. A sidewall of the recess is then altered. Exemplary alterations include having an altered profile, treating the sidewall, and forming a layer on the sidewall. An epitaxial region is then grown in the recess. The epitaxial region interfaces the altered sidewall of the recess and is a strained epitaxial region.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: June 12, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng Yuan, Chih Chieh Yeh, Hung-Li Chiang, Tsung-Lin Lee
  • Publication number: 20180151564
    Abstract: In a method of forming a semiconductor device including a fin field effect transistor (FinFET), a sacrificial layer is formed over a source/drain structure of a FinFET structure and an isolation insulating layer. A mask pattern is formed over the sacrificial layer. The sacrificial layer and the source/drain structure are patterned by using the mask pattern as an etching mask, thereby forming openings adjacent to the patterned sacrificial layer and source/drain structure. A dielectric layer is formed in the openings. After the dielectric layer is formed, the patterned sacrificial layer is removed to form a contact opening over the patterned source/drain structure. A conductive layer is formed in the contact opening.
    Type: Application
    Filed: February 10, 2017
    Publication date: May 31, 2018
    Inventors: Tung Ying LEE, Chih Chieh YEH, Tsung-Lin LEE, Yee-Chia YEO, Meng-Hsuan HSIAO
  • Publication number: 20180151438
    Abstract: A semiconductor structure includes a plurality of first semiconductor layers interleaved with a plurality of second semiconductor layers. The first and second semiconductor layers have different material compositions. A dummy gate stack is formed over an uppermost first semiconductor layer. A first etching process is performed to remove portions of the second semiconductor layer that are not disposed below the dummy gate stack, thereby forming a plurality of voids. The first etching process has an etching selectivity between the first semiconductor layer and the second semiconductor layer. Thereafter, a second etching process is performed to enlarge the voids.
    Type: Application
    Filed: August 2, 2017
    Publication date: May 31, 2018
    Inventors: Hung-Li Chiang, Szu-Wei Huang, Huan-Sheng Wei, Jon-Hsu Ho, Chih Chieh Yeh, Wen-Hsing Hsieh, Chung-Cheng Wu, Yee-Chia Yeo
  • Publication number: 20180151717
    Abstract: A semiconductor device includes a fin field effect transistor (FinFET). The FinFET includes a channel disposed on a fin, a gate disposed over the channel and a source and drain. The channel includes at least two pairs of a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer. The first semiconductor layer has a different lattice constant than the second semiconductor layer. A thickness of the first semiconductor layer is three to ten times a thickness of the second semiconductor layer at least in one pair.
    Type: Application
    Filed: February 10, 2017
    Publication date: May 31, 2018
    Inventors: Chao-Ching CHENG, Chih Chieh YEH, Cheng-Hsien WU, Hung-Li CHIANG, Jung-Piao CHIU, Tzu-Chiang CHEN, Tsung-Lin LEE, Yu-Lin YANG, I-Sheng CHEN
  • Patent number: 9972545
    Abstract: A semiconductor device includes an n-type vertical field-effect transistor (FET) that includes: a first source/drain feature disposed in a substrate; a first vertical bar structure that includes a first sidewall and a second sidewall disposed over the substrate; a gate disposed along the first sidewall of the first vertical bar structure; a second vertical bar structure electrically coupled to the first vertical bar structure; and a second source/drain feature disposed over the first vertical bar structure; and a p-type FET that includes; a third source/drain feature disposed in the substrate; a third vertical bar structure that includes a third sidewall and a fourth sidewall disposed over the substrate; the gate disposed along the third sidewall of the third vertical bar structure; a fourth vertical bar structure electrically coupled to the third vertical bar structure; and a fourth source/drain feature disposed over the third vertical bar structure.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: May 15, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Li Chiang, Chih Chieh Yeh, Cheng-Yi Peng, Tzu-Chiang Chen, Yee-Chia Yeo
  • Publication number: 20180090570
    Abstract: Transistor structures and methods of forming transistor structures are provided. The transistor structures include alternating layers of a first epitaxial material and a second epitaxial material. In some embodiments, one of the first epitaxial material and the second epitaxial material may be removed for one of an n-type or p-type transistor. A bottommost layer of the first epitaxial material and the second epitaxial material maybe be removed, and sidewalls of one of the first epitaxial material and the second epitaxial material may be indented or recessed.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 29, 2018
    Inventors: Cheng-Yi Peng, Hung-Li Chiang, Yu-Lin Yang, Chih Chieh Yeh, Yee-Chia Yeo, Chi-Wen Liu
  • Patent number: 9887100
    Abstract: Methods of forming semiconductor devices and structures thereof are disclosed. In some embodiments, a semiconductor device includes a substrate that includes fins. Gates are disposed over the fins, the gates being substantially perpendicular to the fins. A source/drain region is disposed on each of fins between two of the gates. A contact is coupled to the source/drain region between the two of the gates. The source/drain region comprises a first width, and the contact comprises a second width. The second width is substantially the same as the first width.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: February 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Ho, Tzu-Chiang Chen, Tsung-Lin Lee, Wei-Jen Lai, Chih Chieh Yeh
  • Patent number: 9876117
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a fin structure over a semiconductor substrate. An upper portion of the fin structure includes a first surface and a second surface which is inclined to the first surface. The semiconductor device structure also includes an isolation feature surrounding a lower portion of the fin structure. The semiconductor device structure further includes a passivation layer covering the first surface and the second surface of the upper portion. The passivation layer includes a semiconductor material and has a substantially uniform thickness. In addition, the semiconductor device structure includes an interfacial layer over the passivation layer. The interfacial layer includes the semiconductor material. The interfacial layer has a first portion covering the fin structure and a second portion covering the isolation feature.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: January 23, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yi Peng, Chih-Chieh Yeh, Hung-Li Chiang, Hung-Ming Chen, Yee-Chia Yeo
  • Patent number: 9853101
    Abstract: Transistor structures and methods of forming transistor structures are provided. The transistor structures include alternating layers of a first epitaxial material and a second epitaxial material. In some embodiments, one of the first epitaxial material and the second epitaxial material may be removed for one of an n-type or p-type transistor. A bottommost layer of the first epitaxial material and the second epitaxial material maybe be removed, and sidewalls of one of the first epitaxial material and the second epitaxial material may be indented or recessed.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: December 26, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Hung-Li Chiang, Yu-Lin Yang, Chih Chieh Yeh, Yee-Chia Yeo, Chi-Wen Liu
  • Publication number: 20170365674
    Abstract: A semiconductor device and a method of forming the semiconductor device is disclosed. A sacrificial film is used to pattern a contact to a semiconductor structure, such as a contact to a source/drain region of a transistor. The contact may include a tapered profile along an axis parallel to the gate electrode such that an outermost width of the contact decreases as the contact extends away from the source/drain region.
    Type: Application
    Filed: December 1, 2016
    Publication date: December 21, 2017
    Inventors: Tung Ying Lee, Chih Chieh Yeh, Jeng-Ya David Yeh, Yuan-Hung Chiu, Chi-Wen Liu, Yee-Chia Yeo
  • Publication number: 20170317193
    Abstract: A semiconductor device comprises a fin structure disposed over a substrate; a gate structure disposed over part of the fin structure; a source/drain structure, which includes part of the fin structure not covered by the gate structure; an interlayer dielectric layer formed over the fin structure, the gate structure, and the source/drain structure; a contact hole formed in the interlayer dielectric layer; and a contact material disposed in the contact hole. The fin structure extends in a first direction and includes an upper layer, wherein a part of the upper layer is exposed from an isolation insulating layer. The gate structure extends in a second direction perpendicular to the first direction. The contact material includes a silicon phosphide layer and a metal layer.
    Type: Application
    Filed: July 18, 2017
    Publication date: November 2, 2017
    Inventors: Cheng-Yi PENG, Chih Chieh YEH, Chih-Sheng CHANG, Hung-Li CHIANG, Hung-Ming CHEN, Yee-Chia YEO
  • Publication number: 20170301787
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate and a stacked wire structure formed over the substrate. The semiconductor device structure also includes a gate structure formed over a middle portion of the stacked wire structure and a source/drain (S/D) structure formed at two opposite sides of the stacked wire structure. The S/D structure includes a top surface, a sidewall surface, and a rounded corner between the top surface and the sidewall surface.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 19, 2017
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hsien WU, Chih-Chieh YEH, Yee-Chia YEO
  • Publication number: 20170263749
    Abstract: An embodiment of a method for forming a transistor that includes providing a semiconductor substrate having a source/drain region is provided where a first SiGe layer is formed over the source/drain region. A thermal oxidation is performed to convert a top portion of the first SiGe layer to an oxide layer and a bottom portion of the first SiGe layer to a second SiGe layer. A thermal diffusion process is performed after the thermal oxidation is performed to form a SiGe area from the second SiGe layer. The SiGe area has a higher Ge concentration than the first SiGe layer.
    Type: Application
    Filed: May 19, 2017
    Publication date: September 14, 2017
    Inventors: Chih-Hao Chang, Jeff J. XU, Chien-Hsun WANG, Chih Chieh YEH, Chih-Hsiang CHANG
  • Publication number: 20170256615
    Abstract: A semiconductor device includes a fin extending from a substrate. The fin has a source/drain region and a channel region. The channel region includes a first semiconductor layer and a second semiconductor layer disposed over the first semiconductor layer and vertically separated from the first semiconductor layer by a spacing area. A high-k dielectric layer at least partially wraps around the first semiconductor layer and the second semiconductor layer. A metal layer is formed along opposing sidewalls of the high-k dielectric layer. The metal layer includes a first material. The spacing area is free of the first material.
    Type: Application
    Filed: May 19, 2017
    Publication date: September 7, 2017
    Inventors: I-Sheng Chen, Chih Chieh YEH, Cheng-Hsien WU, Yee-Chia YEO
  • Publication number: 20170243941
    Abstract: FinFETs and methods of forming finFETs are described. According to some embodiments, a structure includes a channel region, first and second source/drain regions, a dielectric layer, and a gate electrode. The channel region includes semiconductor layers above a substrate. Each of the semiconductor layers is separated from neighboring ones of the semiconductor layers, and each of the semiconductor layers has first and second sidewalls. The first and second sidewalls are aligned along a first and second plane, respectively, extending perpendicularly to the substrate. The first and second source/drain regions are disposed on opposite sides of the channel region. The semiconductor layers extend from the first source/drain region to the second source/drain region. The dielectric layer contacts the first and second sidewalls of the semiconductor layers, and the dielectric layer extends into a region between the first plane and the second plane. The gate electrode is over the dielectric layer.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: Chih Chieh Yeh, Cheng-Yi Peng, Tsung-Lin Lee
  • Patent number: 9741829
    Abstract: A semiconductor device comprises a fin structure disposed over a substrate; a gate structure disposed over part of the fin structure; a source/drain structure, which includes part of the fin structure not covered by the gate structure; an interlayer dielectric layer formed over the fin structure, the gate structure, and the source/drain structure; a contact hole formed in the interlayer dielectric layer; and a contact material disposed in the contact hole. The fin structure extends in a first direction and includes an upper layer, wherein a part of the upper layer is exposed from an isolation insulating layer. The gate structure extends in a second direction perpendicular to the first direction. The contact material includes a silicon phosphide layer and a metal layer.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: August 22, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Peng, Chih Chieh Yeh, Chih-Sheng Chang, Hung-Li Chiang, Hung-Ming Chen, Yee-Chia Yeo
  • Patent number: 9735274
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate and a stacked wire structure formed over the substrate. The semiconductor device structure also includes a gate structure formed over a middle portion of the stacked wire structure and a source/drain (S/D) structure formed at two opposite sides of the stacked wire structure. The S/D structure includes a top surface, a sidewall surface, and a rounded corner between the top surface and the sidewall surface.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: August 15, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hsien Wu, Chih-Chieh Yeh, Yee-Chia Yeo
  • Patent number: 9728461
    Abstract: A method for fabricating a semiconductor device includes forming a first gate stack over a first fin feature and second gate stack over a second fin feature, removing the first gate stack to form a first gate trench that exposes the first fin structure, removing the second gate stack to form a second gate trench that exposes the second fin feature, performing a high-pressure-anneal process to a portion of the first fin feature and forming a first high-k/metal gate (HK/MG) within the first gate trench over the portion of the first fin feature and a second HK/MG within the second gate trench over the second fin feature. Therefore the first HK/MG is formed with a first threshold voltage and the second HK/MG is formed with a second threshold voltage, which is different than the first threshold voltage.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: August 8, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Chia-Cheng Ho, Chih Chieh Yeh, Tsung-Lin Lee, Yu-Lin Yang