Patents by Inventor Chih-Hao Chang

Chih-Hao Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978736
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip (IC). The IC includes a first fin projecting vertically from a semiconductor substrate. A second fin projects vertically from the semiconductor substrate, where the second fin is spaced from the first fin, and where the first fin has a first uppermost surface that is disposed over a second uppermost surface of the second fin. A nanostructure stack is disposed over the second fin and vertically spaced from the second fin, where the nanostructure stack comprises a plurality of vertically stacked semiconductor nanostructures. A pair of first source/drain regions is disposed on the first fin, where the first source/drain regions are disposed on opposite sides of an upper portion of the first fin. A pair of second source/drain regions is disposed on the second fin, where the second source/drain regions are disposed on opposite sides of the nanostructure stack.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Min Cao, Shang-Wen Chang
  • Patent number: 11978669
    Abstract: The present disclosure provides a semiconductor structure. The structure includes a semiconductor substrate, a gate stack over a first portion of a top surface of the semiconductor substrate; and a laminated dielectric layer over at least a portion of a top surface of the gate stack. The laminated dielectric layer includes at least a first sublayer and a second sublayer. The first sublayer is formed of a material having a dielectric constant lower than a dielectric constant of a material used to form the second sublayer and the material used to form the second sublayer has an etch selectivity higher than an etch selectivity of the material used to form the first sublayer.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Lin Chuang, Chia-Hao Chang, Sheng-Tsung Wang, Lin-Yu Huang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20240145555
    Abstract: Semiconductor structures and processes are provided. A semiconductor structure of the present disclosure includes a first base portion and a second base portion extending lengthwise along a first direction, a first source/drain feature disposed over the first base portion, a second source/drain feature disposed over the second base portion, a center dielectric fin sandwiched between the first source/drain feature and the second source/drain feature along a second direction perpendicular to the first direction, and a source/drain contact disposed over the first source/drain feature, the second source/drain feature and the center dielectric fin. A portion of the source/drain contact extends between the first source/drain feature and the second source/drain feature along the second direction.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 2, 2024
    Inventors: Ming-Heng Tsai, Chih-Hao Chang, Chun-Sheng Liang, Ta-Chun Lin
  • Patent number: 11961892
    Abstract: A semiconductor device and methods of forming the same are disclosed. The semiconductor device includes a substrate, first and second source/drain (S/D) regions, a channel between the first and second S/D regions, a gate engaging the channel, and a contact feature connecting to the first S/D region. The contact feature includes first and second contact layers. The first contact layer has a conformal cross-sectional profile and is in contact with the first S/D region on at least two sides thereof. In embodiments, the first contact layer is in direct contact with three or four sides of the first S/D region so as to increase the contact area. The first contact layer includes one of a semiconductor-metal alloy, an III-V semiconductor, and germanium.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Carlos H. Diaz, Chung-Cheng Wu, Chia-Hao Chang, Chih-Hao Wang, Jean-Pierre Colinge, Chun-Hsiung Lin, Wai-Yi Lien, Ying-Keung Leung
  • Patent number: 11959623
    Abstract: The present disclosure provides a connecting device and a lamp system. The connecting device is used to connect multiple lamps to form the lamp system. The connecting device includes a connecting element, a cover, and a shell. The cover is mounted on the connecting element and includes at least two first assembling members. The shell is detachably mounted on the cover. The shell includes a side wall, an opening, multiple gateways, and at least two second assembling members. The side wall surrounds a space. The opening and the gateways all are formed on a top of the side wall and communicate with the space. A portion of each of the lamps is received in one of the gateways. The second assembling members are disposed on the side wall and face each other in a radial line of the shell, and respectively engage with the first assembling members.
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: April 16, 2024
    Assignee: Radiant Opto-Electronics Corporation
    Inventors: Chih-Hung Ju, Cheng-Ang Chang, Guo-Hao Huang, Chung-Kuang Chen
  • Publication number: 20240120338
    Abstract: A semiconductor device structure is provided. The semiconductor device has a first dielectric wall between an n-type source/drain region and a p-type source/drain region to physically and electrically isolate the n-type source/drain region and the p-type source/drain region from each other. A second dielectric wall is formed between a first channel region connected to the n-type source/drain region and a second channel region connected to the p-type source/drain region. A contact is formed to physically and electrically connect the n-type source/drain region with the p-type source/drain region, wherein the contact extends over the first dielectric wall. The first electric wall has a gradually decreasing width W5 towards a tip of the dielectric wall from a top contact position between the first dielectric wall and either the n-type source/drain region or the p-type source/drain region.
    Type: Application
    Filed: February 15, 2023
    Publication date: April 11, 2024
    Inventors: Ta-Chun LIN, Ming-Che CHEN, Yu-Hsuan LU, Chih-Hao CHANG
  • Publication number: 20240120337
    Abstract: A semiconductor device structure includes a first dielectric wall, a plurality of first semiconductor layers vertically stacked and extending outwardly from a first side of the first dielectric wall, each first semiconductor layer has a first width, a plurality of second semiconductor layers vertically stacked and extending outwardly from a second side of the first dielectric wall, each second semiconductor layer has a second width, a plurality of third semiconductor layers disposed adjacent the second side of the first dielectric wall, each third semiconductor layer has a third width greater than the second width, a first gate electrode layer surrounding at least three surfaces of each of the first semiconductor layers, the first gate electrode layer having a first conductivity type, and a second gate electrode layer surrounding at least three surfaces of each of the second semiconductor layers, the second gate electrode layer having a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: January 15, 2023
    Publication date: April 11, 2024
    Inventors: Ta-Chun LIN, Chih-Hung HSIEH, Chun-Sheng LIANG, Wen-Chiang HONG, Chun-Wing YEUNG, Kuo-Hua PAN, Chih-Hao CHANG, Jhon Jhy LIAW
  • Publication number: 20240121523
    Abstract: A light-adjusting device having first regions and second regions is provided. The light-adjusting device includes pillars that form several groups of meta structures. The groups of meta structures correspond to the first regions, and from a top view, the first regions and the second regions are arranged in a checkerboard pattern.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 11, 2024
    Inventors: Kai-Hao CHANG, Chun-Yuan WANG, Shin-Hong KUO, Zong-Ru TU, Po-Hsiang WANG, Chih-Ming WANG
  • Patent number: 11955535
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to one embodiment includes an active region including a channel region and a source/drain region adjacent the channel region, a gate structure over the channel region of the active region, a source/drain contact over the source/drain region, a dielectric feature over the gate structure and including a lower portion adjacent the gate structure and an upper portion away from the gate structure, and an air gap disposed between the gate structure and the source/drain contact. A first width of the upper portion of the dielectric feature along a first direction is greater than a second width of the lower portion of the dielectric feature along the first direction. The air gap is disposed below the upper portion of the dielectric feature.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hao Chang, Lin-Yu Huang, Sheng-Tsung Wang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 11955515
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chuan Chiu, Chia-Hao Chang, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Yu-Ming Lin
  • Publication number: 20240113143
    Abstract: Various embodiments of the present disclosure are directed towards an imaging device including a first image sensor element and a second image sensor element respectively comprising a pixel unit disposed within a semiconductor substrate. The first image sensor element is adjacent to the second image sensor element. A first micro-lens overlies the first image sensor element and is laterally shifted from a center of the pixel unit of the first image sensor element by a first lens shift amount. A second micro-lens overlies the second image sensor element and is laterally shifted from a center of the pixel unit of the second image sensor element by a second lens shift amount different from the first lens shift amount.
    Type: Application
    Filed: January 6, 2023
    Publication date: April 4, 2024
    Inventors: Cheng Yu Huang, Wen-Hau Wu, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Chih-Kung Chang
  • Publication number: 20240113165
    Abstract: A semiconductor device includes a substrate, a first stack of semiconductor nanosheets, a second stack of semiconductor nanosheets, a gate structure and a first dielectric wall. The substrate includes a first fin and a second fin. The first stack of semiconductor nanosheets is disposed on the first fin. The second stack of semiconductor nanosheets is disposed on the second fin. The gate structure wraps the first stack of semiconductor nanosheets and the second stack of semiconductor nanosheets. The first dielectric wall is disposed between the first stack of semiconductor nanosheets and the second stack of semiconductor nanosheets. The first dielectric wall includes at least one neck portion between adjacent two semiconductor nanosheets of the first stack.
    Type: Application
    Filed: January 10, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun LIN, Chun-Sheng Liang, Chih-Hao Chang, Jhon Jhy Liaw
  • Patent number: 11948879
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a device, a first dielectric material disposed over the device, and an opening is formed in the first dielectric material. The semiconductor device structure further includes a conductive structure disposed in the opening, and the conductive structure includes a first sidewall. The semiconductor device structure further includes a surrounding structure disposed in the opening, and the surrounding structure surrounds the first sidewall of the conductive structure. The surrounding structure includes a first spacer layer and a second spacer layer adjacent the first spacer layer. The first spacer layer is separated from the second spacer layer by an air gap.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240096701
    Abstract: A device includes: a stack of semiconductor nanostructures; a gate structure wrapping around the semiconductor nanostructures, the gate structure extending in a first direction; a source/drain region abutting the gate structure and the stack in a second direction transverse the first direction; a contact structure on the source/drain region; a backside conductive trace under the stack, the backside conductive trace extending in the second direction; a first through via that extends vertically from the contact structure to a top surface of the backside dielectric layer; and a gate isolation structure that abuts the first through via in the second direction.
    Type: Application
    Filed: May 17, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Ching-Wei TSAI, Shang-Wen CHANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Publication number: 20240096996
    Abstract: A semiconductor device includes a first dielectric layer, a stack of semiconductor layers disposed over the first dielectric layer, a gate structure wrapping around each of the semiconductor layers and extending lengthwise along a direction, and a dielectric fin structure and an isolation structure disposed on opposite sides of the stack of semiconductor layers and embedded in the gate structure. The dielectric fin structure has a first width along the direction smaller than a second width of the isolation structure along the direction. The isolation structure includes a second dielectric layer extending through the gate structure and the first dielectric layer, and a third dielectric layer extending through the first dielectric layer and disposed on a bottom surface of the gate structure and a sidewall of the first dielectric layer.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Lo-Heng Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240096986
    Abstract: A method includes forming a first gate spacer and a second gate spacer on a sidewall of a first gate structure. The first gate spacer is between the second gate spacer and the first gate structure. A first interlayer dielectric (ILD) layer is formed to surround the first gate spacer, the second gate spacer, and the first gate structure. A portion of the second gate spacer and a portion of the first ILD layer are removed simultaneously. A top surface of the second gate spacer is lower than a top surface of the first ILD layer.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ting LI, Jen-Hsiang LU, Chih-Hao CHANG
  • Publication number: 20240097034
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Publication number: 20240096961
    Abstract: A contact stack of a semiconductor device includes a source/drain feature, a silicide layer wrapping around the source/drain feature, a seed metal layer in direct contact with the silicide layer, and a conductor in contact with the seed metal layer. The contact stack excludes a metal nitride layer in direct contact with the silicide layer.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Shih-Chuan CHIU, Tien-Lu LIN, Yu-Ming LIN, Chia-Hao CHANG, Chih-Hao WANG, Jia-Chuan YOU
  • Publication number: 20240087951
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first metal layer over a substrate, forming a dielectric layer over the first metal layer. The method includes forming a trench in the dielectric layer, and performing a surface treatment process on a sidewall surface of the trench to form a hydrophobic layer. The hydrophobic layer is formed on a sidewall surface of the dielectric layer. The method further includes depositing a metal material in the trench and over the hydrophobic layer to form a via structure.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Chun-Hao Kung, Chih-Chieh Chang, Kao-Feng Liao, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: D1021220
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: April 2, 2024
    Assignee: Radiant Opto-Electronics Corporation
    Inventors: Cheng-Ang Chang, Guo-Hao Huang, Chun-Yi Sun, Chih-Hung Ju, Pin-Tsung Wang