Patents by Inventor Chih-Hao Chang

Chih-Hao Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240014292
    Abstract: Semiconductor structures and methods of forming the same are provided. A semiconductor structure according to the present disclosure includes an active region having a channel region and a source/drain region, a gate structure over the channel region, a gate spacer layer disposed over the channel region and extending along a sidewall of the gate structure, an epitaxial source/drain feature over the source/drain region, a contact etch stop layer (CESL) disposed on the epitaxial source/drain feature and extending along a sidewall of the gate spacer layer, a source/drain contact disposed over the epitaxial source/drain feature, and a dielectric cap layer disposed over the gate structure, the gate spacer layer and at least a portion of the CESL. A sidewall of the source/drain contact is in direct contact with a sidewall of the CESL.
    Type: Application
    Filed: January 6, 2023
    Publication date: January 11, 2024
    Inventors: Ta-Chun Lin, Yi-Hsien Chen, Wen-Cheng Luo, Chung-Ting Li, Yi-Shien Mor, Chih-Hao Chang
  • Publication number: 20240014256
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor structure includes a substrate, a first active region, a second active region and a third active region over the substrate, a first gate structure over a channel region of the first active region, a second gate structure over a channel region of the second active region, a third gate structure over a channel region of the third active region, a first cap layer over the first gate structure, a second cap layer over the second gate structure, and a third cap layer over the third gate structure. A height of the second gate structure is smaller than a height of the first gate structure or a height of the third gate structure.
    Type: Application
    Filed: August 30, 2022
    Publication date: January 11, 2024
    Inventors: Ta-Chun Lin, Chih-Pin Tsao, Chih-Hao Chang
  • Patent number: 11855232
    Abstract: A semiconductor package is provided. The semiconductor package includes a heat dissipation substrate including a first conductive through-via embedded therein; a sensor die disposed on the heat dissipation substrate; an insulating encapsulant laterally encapsulating the sensor die; a second conductive through-via penetrating through the insulating encapsulant; and a first redistribution structure and a second redistribution structure disposed on opposite sides of the heat dissipation substrate. The second conductive through-via is in contact with the first conductive through-via. The sensor die is located between the second redistribution structure and the heat dissipation substrate. The second redistribution structure has a window allowing a sensing region of the sensor die receiving light. The first redistribution structure is electrically connected to the sensor die through the first conductive through-via, the second conductive through-via and the second redistribution structure.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Yu-Chih Huang, Chih-Hao Chang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin
  • Patent number: 11855210
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Patent number: 11848363
    Abstract: A method of forming a semiconductor device includes forming a gate structure on a semiconductor substrate. A gate spacer is formed adjacent to the gate structure. The gate spacer includes a first dielectric layer and a second dielectric layer on the first dielectric layer. A plasma treatment is performed to the second dielectric layer. After performing the plasma treatment, at least a portion of the second dielectric layer is removed such that a sidewall of the first dielectric layer is exposed. A dielectric cap is formed on the gate spacer.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ting Li, Jen-Hsiang Lu, Chih-Hao Chang
  • Patent number: 11844705
    Abstract: An implant guide system for hip replacement surgery includes an angle guide member and a first positioning plate. The angle guide member has a body and a protrusion that are substantially connected to each other. The body has a curved surface corresponding in shape to a surface of a patient's acetabulum. The protrusion has a first through hole extending to the body. An acute angle is defined between an extension line of the first through hole and a flat surface of the body. The first positioning plate has a first holding portion and a first spacing portion that are substantially connected to each other. The first spacing portion has a second through hole, a third through hole and a fourth through hole that are parallel to each other.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: December 19, 2023
    Assignees: UNITED ORTHOPEDIC CORPORATION, CHINA MEDICAL UNIVERSITY
    Inventors: Jiann-Jong Liau, Chih-Hao Chang, Kui-Chou Huang, Yi-Wen Chen, Cheng-Ting Shih
  • Patent number: 11830796
    Abstract: A circuit substrate includes a base substrate, a plurality of conductive vias, a first redistribution circuit structure, a second redistribution circuit structure and a semiconductor die. The plurality of conductive vias penetrate through the base substrate. The first redistribution circuit structure is located on the base substrate and connected to the plurality of conductive vias. The second redistribution circuit structure is located over the base substrate and electrically connected to the plurality of conductive vias, where the second redistribution circuit structure includes a plurality of conductive blocks, and at least one of the plurality of conductive blocks is electrically connected to two or more than two of the plurality of conductive vias, and where the base substrate is located between the first redistribution circuit structure and the second redistribution circuit structure.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Chen, Yu-Chih Huang, Chih-Hao Chang, Po-Chun Lin, Chun-Ti Lu, Chia-Hung Liu, Hao-Yi Tsai
  • Patent number: 11810963
    Abstract: A method includes forming a fin extending above an isolation region. A sacrificial gate stack having a first sidewall and a second sidewall opposite the first sidewall is formed over the fin. A first spacer is formed on the first sidewall of the sacrificial gate stack. A second spacer is formed on the second sidewall of the sacrificial gate stack. A patterned mask having an opening therein is formed over the sacrificial gate stack, the first spacer and the second spacer. The patterned mask extends along a top surface and a sidewall of the first spacer. The second spacer is exposed through the opening in the patterned mask. The fin is patterned using the patterned mask, the sacrificial gate stack, the first spacer and the second spacer as a combined mask to form a recess in the fin. A source/drain region is epitaxially grown in the recess.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: November 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Ting Li, Bi-Fen Wu, Jen-Hsiang Lu, Chih-Hao Chang
  • Publication number: 20230307523
    Abstract: A semiconductor device structure and a formation method are provided. The method includes forming a channel structure over a substrate and forming a dielectric layer over the channel structure. The dielectric layer has a higher dielectric constant greater than silicon nitride. The method also includes forming a gate stack over the dielectric layer and forming a spacer element over a sidewall of the gate stack. The spacer element covers a portion of the dielectric layer.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 28, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pin-Chun SHEN, Li-Ying WU, Shih-Hsun CHANG, Chih-Hao CHANG, Jen-Hsiang LU
  • Publication number: 20230299203
    Abstract: A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy, gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Inventors: Shao-Ming YU, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Patent number: 11758677
    Abstract: A release mechanism is disclosed that can facilitate safely and efficiently removing an expansion card from a computing device. The release mechanism can be installed on a motherboard around an expansion slot, and can include an opening that permits access to the expansion slot to allow an expansion card to be installed therein. When removal of the expansion card is desired, a handled of the release mechanism can be pulled, causing contact surfaces of the release mechanism to push the expansion card away from the expansion slot with even force, removing the need to tilt the expansion card.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: September 12, 2023
    Assignee: QUANTA COMPUTER INC.
    Inventors: Chun Chang, Hsin-Chieh Lin, Chih-Hao Chang, Yi-Fu Liu
  • Patent number: 11721761
    Abstract: A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: August 8, 2023
    Assignee: Mosaid Technologies Incorporated
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Publication number: 20230065405
    Abstract: A semiconductor package and a manufacturing method for the semiconductor package are provided. The semiconductor package includes a molded semiconductor device, a first redistribution structure, and conductive vias. The molded semiconductor device comprises a sensor die with a first surface and a second surface opposite the first surface, wherein the sensor die has an input/output region and a sensing region at the first surface. The first redistribution structure is disposed on the first surface of the sensor die, wherein the first redistribution structure covers the input/output region and exposes the sensing region, and the first redistribution structure comprises a conductive layer having a redistribution pattern and a ring structure. The redistribution pattern is electrically connected with the sensor die. The ring structure surrounds the sensing region and is separated from the redistribution pattern, wherein the ring structure is closer to the sensing region than the redistribution pattern.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chih Huang, Chih-Hao Chang, Po-Chun Lin, Chun-Ti Lu, Zheng-Gang Tsai, Shih-Wei Chen, Chia-Hung Liu, Hao-Yi Tsai, Chung-Shi Liu
  • Patent number: 11536292
    Abstract: A fan assembly includes a socket to receive a fan module, a fan flap coupled to a first side wall of the socket, and an anti-reflow device coupled to a second side wall of the socket. The fan flap moves in a curved path between a first position and a second position. The anti-reflow device has an attachment feature, an embossed feature, and a stopping feature. The attachment feature attaches the anti-reflow device to the second side wall. The embossed feature extends through a first aperture in the second side wall. The stopping feature extends through a second aperture in the second side wall and contacts the fan flap. When the fan module is removed, the stopping feature retains the fan flap in the first position to block the socket and prevent air from reflowing through the socket.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: December 27, 2022
    Assignee: QUANTA COMPUTER INC.
    Inventors: Yaw-Tzorng Tsorng, Chun Chang, Ting-Kuang Pao, Chih-Hao Chang
  • Patent number: 11502077
    Abstract: Semiconductor devices and manufacturing and design methods thereof are disclosed. In one embodiment, a semiconductor device includes an active FinFET disposed over a workpiece comprising a first semiconductive material, the active FinFET comprising a first fin. An electrically inactive FinFET structure is disposed over the workpiece proximate the active FinFET, the electrically inactive FinFET comprising a second fin. A second semiconductive material is disposed between the first fin and the second fin.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Tung Ying Lee, Wen-Huei Guo, Chih-Hao Chang, Shou-Zen Chang
  • Publication number: 20220360775
    Abstract: A video encoding method includes: during a first period, performing an encoding process upon a first block group of a current frame to generate a first block group bitstream; and during a second period, transmitting a second block group bitstream derived from encoding a second block group of the current frame, wherein the second period overlaps the first period. The encoding process includes: during a first time segment of the first period, performing a first in-loop filtering process upon a first group of pixels; and during a second time segment of the first period, performing a second in-loop filtering process upon a second group of pixels, wherein the second time segment overlaps the first time segment, and a non-zero pixel distance exists between a first edge pixel of the first group of pixels and a second edge pixel of the second group of pixels in a filter direction.
    Type: Application
    Filed: April 21, 2022
    Publication date: November 10, 2022
    Applicant: MEDIATEK INC.
    Inventors: Tung-Hsing Wu, Shih-Yu Chen, Jer-Ming Chang, Chih-Hao Chang, Han-Liang Chou
  • Patent number: 11469227
    Abstract: A semiconductor device includes a first fin field effect transistor (FinFET) and a contact bar (source/drain (S/D) contact layer). The first FinFET includes a first fin structure extending in a first direction, a first gate structure extending in a second direction crossing the first direction, and a first S/D structure. The contact bar is disposed over the first S/D structure and extends in the second direction crossing the first S/D structure in plan view. The contact bar includes a first portion disposed over the first S/D structure and a second portion. The second portion overlaps no fin structure and no S/D structure. A width of the second portion in the first direction is smaller than a width of the first portion in the first direction in plan view.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: October 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Hao Chang, Wen-Huei Guo, Yi-Shien Mor
  • Publication number: 20220310499
    Abstract: A circuit substrate includes a base substrate, a plurality of conductive vias, a first redistribution circuit structure, a second redistribution circuit structure and a semiconductor die. The plurality of conductive vias penetrate through the base substrate. The first redistribution circuit structure is located on the base substrate and connected to the plurality of conductive vias. The second redistribution circuit structure is located over the base substrate and electrically connected to the plurality of conductive vias, where the second redistribution circuit structure includes a plurality of conductive blocks, and at least one of the plurality of conductive blocks is electrically connected to two or more than two of the plurality of conductive vias, and where the base substrate is located between the first redistribution circuit structure and the second redistribution circuit structure.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 29, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Chen, Yu-Chih Huang, Chih-Hao Chang, Po-Chun Lin, Chun-Ti Lu, Chia-Hung Liu, Hao-Yi Tsai
  • Publication number: 20220293467
    Abstract: A method for microstructure modification of conducting lines is provided. An electroplating process is performed to deposit the metal thin film/conducting line(s) with a face-centered cubic (FCC) structure and a preferred crystallographic orientation over a surface of a substrate. The metal thin film/ conducting line(s) is subsequently subjected to a thermal annealing process to modify its microstructure with the grain sizes in a range of 5 ?m to 100 ?m. The thermal annealing process is conducted at the temperature of above 25 degrees Celsius and below 240 degrees Celsius.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Inventors: Cheng EN HO, Cheng Yu LEE, Ping Chou LIN, Chih Pin PAN, Chih Hao CHANG
  • Publication number: 20220285566
    Abstract: A semiconductor package is provided. The semiconductor package includes a heat dissipation substrate including a first conductive through-via embedded therein; a sensor die disposed on the heat dissipation substrate; an insulating encapsulant laterally encapsulating the sensor die; a second conductive through-via penetrating through the insulating encapsulant; and a first redistribution structure and a second redistribution structure disposed on opposite sides of the heat dissipation substrate. The second conductive through-via is in contact with the first conductive through-via. The sensor die is located between the second redistribution structure and the heat dissipation substrate. The second redistribution structure has a window allowing a sensing region of the sensor die receiving light. The first redistribution structure is electrically connected to the sensor die through the first conductive through-via, the second conductive through-via and the second redistribution structure.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Yu-Chih Huang, Chih-Hao Chang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin