Patents by Inventor Chih-Ming Sun

Chih-Ming Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180190786
    Abstract: The present invention discloses a manufacturing method for a semiconductor device. The manufacturing method includes: providing a substrate; forming a semiconductor stacked structure on the substrate; forming at least apart of a stacked cap layer on the semiconductor stacked structure, wherein the part of the stacked cap layer includes a nitride layer; removing a part of the nitride layer; forming the rest part of the stacked cap layer; forming a protection layer on the stacked cap layer, and etching the protection layer to form an opening, wherein the nitride layer is not exposed by the opening; and introducing an etchant material into the opening to etch the substrate. The present invention also provides a semiconductor device made by the method.
    Type: Application
    Filed: March 3, 2018
    Publication date: July 5, 2018
    Inventors: Chih-Ming Sun, Hsin-Hui Hsu, Ming-Han Tsai
  • Patent number: 9941379
    Abstract: The present invention discloses a manufacturing method for a semiconductor device. The manufacturing method includes: providing a substrate; forming a semiconductor stacked structure on the substrate; forming at least apart of a stacked cap layer on the semiconductor stacked structure, wherein the part of the stacked cap layer includes a nitride layer; removing a part of the nitride layer; forming the rest part of the stacked cap layer; forming a protection layer on the stacked cap layer, and etching the protection layer to form an opening, wherein the nitride layer is not exposed by the opening; and introducing an etchant material into the opening to etch the substrate. The present invention also provides a semiconductor device made by the method.
    Type: Grant
    Filed: March 12, 2016
    Date of Patent: April 10, 2018
    Assignee: PIXART IMAGING INCORPORATION
    Inventors: Chih-Ming Sun, Hsin-Hui Hsu, Ming-Han Tsai
  • Publication number: 20180058936
    Abstract: A far infrared sensor package includes a package body and a plurality of far infrared sensor array integrated circuits. The plurality of far infrared sensor array integrated circuits are disposed on a same plane and inside the package body. Each of the far infrared sensor array integrated circuits includes a far infrared sensing element array of a same size.
    Type: Application
    Filed: December 30, 2016
    Publication date: March 1, 2018
    Inventors: Chih-Ming Sun, Sen-Huang Huang
  • Patent number: 9783409
    Abstract: This invention provides a MEMS device, including: a mass structure having at least one anchor; at least one flexible structure connected with the mass structure at the at least one anchor; a plurality of top electrodes located above the mass structure and forming a top capacitor circuit with the mass structure; and a plurality of bottom electrodes located under the mass structure and forming a bottom capacitor circuit with the mass structure. The projections of the plural top electrodes on the mass structure along a normal direction of the mass structure are located at opposite sides of the anchor, and the projections of the plural bottom electrodes on the mass structure along a normal direction of the mass structure are located at opposite sides of the anchor. This invention also provides a MEMS compensation structure.
    Type: Grant
    Filed: September 28, 2014
    Date of Patent: October 10, 2017
    Assignee: PIXART IMAGING INCORPORATION
    Inventors: Ming-Han Tsai, Chih-Ming Sun, Hsin-Hui Hsu
  • Publication number: 20170250098
    Abstract: A semiconductor processing device includes a first etching chamber, a second etching chamber, and an etching module. The etching module is adapted to interchangeably contain the first etching chamber or the second etching chamber for wafer etching. A semiconductor process using the semiconductor processing device is also provided.
    Type: Application
    Filed: May 16, 2017
    Publication date: August 31, 2017
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yii-Cheng Lin, Chih-Ming Sun, Pinyen Lin
  • Patent number: 9666461
    Abstract: A semiconductor processing device includes a first etching chamber, a second etching chamber, and an etching module. The etching module is adapted to interchangeably contain the first etching chamber or the second etching chamber for wafer etching. A semiconductor process using the semiconductor processing device is also provided.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: May 30, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yii-Cheng Lin, Chih-Ming Sun, Pinyen Lin
  • Patent number: 9660555
    Abstract: The invention provides a MEMS device with enhanced structural strength. The MEMS device includes a plurality of metal layers, including a top metal layer with a plurality of metal segments. The metal segments are individually connected to an adjacent metal layer immediately under the top metal layer through at least one supporting pillar, and there is no dielectric layer between the metal segments and the adjacent metal layer immediately under the top metal layer. The metal layers except the top metal layer are respectively connected to their adjacent metal layers through at least one supporting pillar and a dielectric layer filling in between.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: May 23, 2017
    Assignee: PIXART IMAGING INCORPORATION
    Inventors: Chih-Ming Sun, Ming-Han Tsai, Hsin-Hui Hsu, WeiChung Wang
  • Publication number: 20160365423
    Abstract: The present invention discloses a manufacturing method for a semiconductor device. The manufacturing method includes: providing a substrate; forming a semiconductor stacked structure on the substrate; forming at least apart of a stacked cap layer on the semiconductor stacked structure, wherein the part of the stacked cap layer includes a nitride layer; removing a part of the nitride layer; forming the rest part of the stacked cap layer; forming a protection layer on the stacked cap layer, and etching the protection layer to form an opening, wherein the nitride layer is not exposed by the opening; and introducing an etchant material into the opening to etch the substrate. The present invention also provides a semiconductor device made by the method.
    Type: Application
    Filed: March 12, 2016
    Publication date: December 15, 2016
    Inventors: Chih-Ming Sun, Hsin-Hui Hsu, Ming-Han Tsai
  • Publication number: 20160349114
    Abstract: An electronic device includes an outer case, a circuit substrate, a thermopile sensor chip, a filter structure, and a waterproof structure. The outer case has an opening. The circuit substrate is disposed inside the outer case. The thermopile sensor chip is disposed on the circuit substrate. The filter structure is disposed above the thermopile sensor chip. The waterproof structure is surroundingly connected between the filter structure and the outer case for sealing up the opening of the outer case, wherein the waterproof structure has a through hole for exposing the filter structure and communicated with the opening of the outer case.
    Type: Application
    Filed: December 17, 2015
    Publication date: December 1, 2016
    Inventors: MING-HAN TSAI, CHIH-MING SUN, JIAN-CHENG LIAO
  • Publication number: 20160282187
    Abstract: A wearable device includes a case and a far infrared temperature sensing device. The case has a first opening. The far infrared temperature sensing device is disposed inside the case of the wearable device. The far infrared temperature sensing device includes an assembly structure, a sensor chip, a filter structure, and a metal shielding structure. The assembly structure has an accommodating space and a top opening. The sensor chip is disposed in the accommodating space of the assembly structure. The filter structure is disposed above the sensor chip. The metal shielding structure is disposed above the sensor chip, and has a second opening to expose the filter structure. The first and second openings are communicated to cooperatively define a through hole.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: CHIH-MING SUN, MING-HAN TSAI, CHENG-NAN TSAI
  • Publication number: 20160273967
    Abstract: The present invention discloses a wearable device with combined sensing capabilities, which includes a wearable assembly and at least one multi-function sensor module. The wearable assembly is suitable to be worn on a part of a user's body. The wearable assembly includes at least one light-transmissible window. The multi-function sensor module is located inside the wearable assembly, for performing an image sensing function and an infrared temperature sensing function. The multi-function sensor module includes an image sensor module for sensing a physical or a biological feature of an object through the light-transmissible window by way of image sensing; and an infrared temperature sensor module for sensing temperature through the light-transmissible window by way of infrared temperature sensing.
    Type: Application
    Filed: May 30, 2015
    Publication date: September 22, 2016
    Applicant: PIXART IMAGING INCORPORATION
    Inventors: Chih-Ming Sun, Ming-Han Tsai
  • Publication number: 20160173002
    Abstract: The invention provides a MEMS device with enhanced structural strength. The MEMS device includes a plurality of metal layers, including a top metal layer with a plurality of metal segments. The metal segments are individually connected to an adjacent metal layer immediately under the top metal layer through at least one supporting pillar, and there is no dielectric layer between the metal segments and the adjacent metal layer immediately under the top metal layer. The metal layers except the top metal layer are respectively connected to their adjacent metal layers through at least one supporting pillar and a dielectric layer filling in between.
    Type: Application
    Filed: February 25, 2016
    Publication date: June 16, 2016
    Applicant: PixArt Imaging Incorporation
    Inventors: Chih-Ming Sun, Ming-Han Tsai, Hsin-Hui Hsu, WeiChung Wang
  • Patent number: 9302901
    Abstract: The invention provides a MEMS device with enhanced structural strength. The MEMS device includes a plurality of metal layers, including a top metal layer with a plurality of metal segments. The metal segments are individually connected to an adjacent metal layer immediately under the top metal layer through at least one supporting pillar, and there is no dielectric layer between the metal segments and the adjacent metal layer immediately under the top metal layer. The metal layers except the top metal layer are respectively connected to their adjacent metal layers through at least one supporting pillar and a dielectric layer filling in between.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: April 5, 2016
    Assignee: PIXART IMAGING INCORPORATION
    Inventors: Chih-Ming Sun, Ming-Han Tsai, Hsin-Hui Hsu, WeiChung Wang
  • Patent number: 9244093
    Abstract: A micro-electro-mechanical sensing device including a substrate, a semiconductor layer, a supporting pillar, a first suspended arm, a connecting member, a second suspended arm, and a proof mass is provided. The semiconductor layer is disposed on or above the substrate. The supporting pillar is disposed on or above the semiconductor layer. The first suspended arm is disposed on the supporting pillar. The supporting connects a portion of the first suspended arm. The connecting member directly or indirectly connects another portion of the first suspended arm. The second suspended arm has a first surface and a second surface opposite to the first surface. The connecting member connects a portion of the first surface. The proof mass connects the second suspended arm and it includes a portion of the second suspended arm as a portion of the proof mass. A method for manufacturing the device is also provided.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 26, 2016
    Assignee: PIXART IMAGING INCORPORATION, R.O.C.
    Inventors: Chih-Ming Sun, Ming-Han Tsai
  • Patent number: 9150403
    Abstract: The present invention discloses a MEMS microphone device and its manufacturing method. The MEMS microphone device includes: a substrate including a first cavity; a MEMS device region above the substrate, wherein the MEMS device region includes a metal layer, a via layer, an insulating material region and a second cavity; a mask layer above the MEMS device region; a first lid having at least one opening communicating with the second cavity, the first lid being fixed above the mask layer; and a second lid fixed under the substrate.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: October 6, 2015
    Assignee: PIXART IMAGING INCORPORATION, R.O.C.
    Inventors: Chuan-Wei Wang, Chih-Ming Sun
  • Patent number: 9070699
    Abstract: A micromachined structure includes a substrate and a suspended structure. The substrate has a cavity formed thereon. The suspended structure is formed on the cavity of the substrate. The suspended structure includes a first metal layer, a second metal layer, and a first dielectric layer positioned between the first and second metal layers, wherein the first dielectric layer has a first opening in communication with the cavity through an opening formed in the first metal layer.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 30, 2015
    Assignee: PIXART IMAGING INC.
    Inventors: Chuanwei Wang, Ming Han Tsai, Chih Ming Sun, Weileun Fang
  • Patent number: 9010185
    Abstract: The present invention discloses a three-dimensional micro-electro-mechanical-system sensor. The sensor includes movable first electrodes, plural movable second electrodes, plural fixed third electrodes, and plural fixed fourth electrodes. The first electrodes and their adjacent third electrodes form at least one first capacitor and at least one second capacitor, and the second electrodes and their adjacent fourth electrodes form at least one third capacitor. The capacitance change of the first capacitor reflects the displacement of the proof mass along a first axis, the capacitance change of the second capacitor reflects the displacement of the proof mass along a second axis, and the capacitance change of the third capacitor reflects the displacement of the proof mass along a third axis. The first, second, and third axes define a three-dimensional coordinate system.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: April 21, 2015
    Assignee: Pixart Imaging Incorporation, R.O.C.
    Inventors: Ming-Han Tsai, Chih-Ming Sun
  • Publication number: 20150102701
    Abstract: The invention provides a MEMS device with enhanced structural strength. The MEMS device includes a plurality of metal layers, including a top metal layer with a plurality of metal segments. The metal segments are individually connected to an adjacent metal layer immediately under the top metal layer through at least one supporting pillar, and there is no dielectric layer between the metal segments and the adjacent metal layer immediately under the top metal layer. The metal layers except the top metal layer are respectively connected to their adjacent metal layers through at least one supporting pillar and a dielectric layer filling in between.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 16, 2015
    Applicant: PIXART IMAGING INCORPORATION
    Inventors: Chih-Ming Sun, Ming-Han Tsai, Hsin-Hui Hsu, WeiChung Wang
  • Publication number: 20150097586
    Abstract: This invention provides a MEMS device, including: a mass structure having at least one anchor; at least one flexible structure connected with the mass structure at the at least one anchor; a plurality of top electrodes located above the mass structure and forming a top capacitor circuit with the mass structure; and a plurality of bottom electrodes located under the mass structure and forming a bottom capacitor circuit with the mass structure. The projections of the plural top electrodes on the mass structure along a normal direction of the mass structure are located at opposite sides of the anchor, and the projections of the plural bottom electrodes on the mass structure along a normal direction of the mass structure are located at opposite sides of the anchor. This invention also provides a MEMS compensation structure.
    Type: Application
    Filed: September 28, 2014
    Publication date: April 9, 2015
    Applicant: PixArt Imaging Incorporation
    Inventors: Ming-Han Tsai, Chih-Ming Sun, Hsin-Hui Hsu
  • Publication number: 20130313662
    Abstract: The present invention discloses a MEMS microphone device and its manufacturing method. The MEMS microphone device includes: a substrate including a first cavity; a MEMS device region above the substrate, wherein the MEMS device region includes a metal layer, a via layer, an insulating material region and a second cavity; a mask layer above the MEMS device region; a first lid having at least one opening communicating with the second cavity, the first lid being fixed above the mask layer; and a second lid fixed under the substrate.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Applicant: PIXART IMAGING INCORPORATION
    Inventors: Chuan-Wei Wang, Chih-Ming Sun