Patents by Inventor Chih-Ning Wu

Chih-Ning Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7595234
    Abstract: A method for forming a metal oxide semiconductor (MOS) transistor is provided. First, a gate structure is formed over a substrate. Then, offset spacers are formed on respective sidewalls of the gate structure. A first ion implantation process is performed to form a lightly doped drain (LDD) in the substrate beside the gate structure. Other spacers are formed on respective sidewalls of the offset spacers. Thereafter, a second ion implantation process is performed to form source/drain region in the substrate beside the spacers. Then, a metal silicide layer is formed on the surface of the source and the drain. An oxide layer is formed on the surface of the metal silicide layer. The spacers are removed and an etching stop layer is formed on the substrate. With the oxide layer over the metal silicide layer, the solvent for removing the spacers is prevented from damaging the metal silicide layer.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 29, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Po-Chao Tsao, Chang-Chi Huang, Ming-Tsung Chen, Yi-Yiing Chiang, Yu-Lan Chang, Chung-Ju Lee, Chih-Ning Wu, Kuan-Yang Liao
  • Patent number: 7544621
    Abstract: A method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process is disclosed, in which the gate electrode, a metal silicide layer, a spacer, a silicon nitride cap layer, and a dielectric layer have been formed. The method includes performing a chemical mechanical polishing process to polish the dielectric layer using the silicon nitride cap layer as a polishing stop layer to expose the silicon nitride cap layer over the gate electrode; removing the exposed silicon nitride cap layer to expose the metal silicide layer; and performing a first etching process to remove the metal silicide layer on the gate electrode.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: June 9, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Cheng-Kuen Chen, Chih-Ning Wu, Wei-Tsun Shiau, Wen-Fu Yu
  • Patent number: 7491615
    Abstract: A method of fabricating strained-silicon transistors includes providing a semiconductor substrate, in which the semiconductor substrate contains a gate structure thereon; performing an etching process to form two recesses corresponding to the gate structure within the semiconductor substrate; performing an oxygen flush on the semiconductor substrate; performing a cleaning process on the semiconductor substrate; and performing a selective epitaxial growth (SEG) to form an epitaxial layer in each recess for forming a source/drain region.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: February 17, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Hsin Tai, Chung-Ju Lee, Wei-Tsun Shiau
  • Publication number: 20080286976
    Abstract: A method of removing a metal suicide layer on a gate electrode in a semiconductor manufacturing process is disclosed, in which the gate electrode, a metal silicide layer, a spacer, a silicon nitride cap layer, and a dielectric layer have been formed. The method includes performing a chemical mechanical polishing process to polish the dielectric layer using the silicon nitride cap layer as a polishing stop layer to expose the silicon nitride cap layer over the gate electrode; removing the exposed silicon nitride cap layer to expose the metal silicide layer; and performing a first etching process to remove the metal silicide layer on the gate electrode.
    Type: Application
    Filed: June 13, 2008
    Publication date: November 20, 2008
    Inventors: Cheng-Kuen Chen, Chih-Ning Wu, Wei-Tsun Shiau, Wen-Fu Yu
  • Patent number: 7338910
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes defining an electrode on a semiconductor substrate; forming a spacer on at least one sidewall of the electrode; performing a process operation on the semiconductor substrate using the spacer as a mask and forming a material layer on the top or the surface of the semiconductor substrate and the electrode; and removing the spacer by steps of performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant. With respect to another aspect, a method of removing a spacer is also disclosed. The method includes performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: March 4, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Chung-Ju Lee, Chih-Ning Wu, Wei-Tsun Shiau
  • Patent number: 7220647
    Abstract: A method of cleaning a wafer, adapted for a patterned gate structure. The gate structures comprise a gate dielectric layer, a nitrogen-containing barrier layer and a silicon-containing gate layer sequentially stacked over the substrate. The method includes cleaning the substrate with phosphoric acid solution and hydrofluoric acid solution so that silicon nitride residues formed in a reaction between the nitrogen-containing barrier layer and the silicon-containing gate layer can be removed and the amount of pollutants and particles can be reduced. Ultimately, the yield of the process as well as the quality and reliability of the device are improved.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: May 22, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Charlie C J Lee, Kuan-Yang Liao
  • Patent number: 7214988
    Abstract: A method for forming a metal oxide semiconductor (MOS) transistor is provided. First, a gate structure is formed over a substrate. Then, offset spacers are formed on respective sidewalls of the gate structure. A first ion implantation process is performed to form a lightly doped drain (LDD) in the substrate beside the gate structure. Other spacers are formed on respective sidewalls of the offset spacers. Thereafter, a second ion implantation process is performed to form source/drain region in the substrate beside the spacers. Then, a metal silicide layer is formed on the surface of the source and the drain. An oxide layer is formed on the surface of the metal silicide layer. The spacers are removed and an etching stop layer is formed on the substrate. With the oxide layer over the metal silicide layer, the solvent for removing the spacers is prevented from damaging the metal silicide layer.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: May 8, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Po-Chao Tsao, Chang-Chi Huang, Ming-Tsung Chen, Yi-Yiing Chiang, Yu-Lan Chang, Chung-Ju Lee, Chih-Ning Wu, Kuan-Yang Liao
  • Publication number: 20070099423
    Abstract: A method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process is disclosed, in which the gate electrode, a metal silicide layer, a spacer, a silicon nitride cap layer, and a dielectric layer have been formed. The method includes performing a chemical mechanical polishing process to polish the dielectric layer using the silicon nitride cap layer as a polishing stop layer to expose the silicon nitride cap layer over the gate electrode; removing the exposed silicon nitride cap layer to expose the metal silicide layer; and performing a first etching process to remove the metal silicide layer on the gate electrode.
    Type: Application
    Filed: November 1, 2005
    Publication date: May 3, 2007
    Inventors: Cheng-Kuen Chen, Chih-Ning Wu, Wei-Tsun Shiau, Wen-Fu Yu
  • Publication number: 20070075379
    Abstract: A metal-oxide-semiconductor transistor device is disclosed, in which, a silicon nitride spacer has been formed but is removed after an ion implantation process to form a source/drain region and a salicide process to form a metal silicide layer on the surface of the source/drain region and the gate electrode are performed. The metal silicide layer comprises silicon, nickel and at least one metal selected from a group consisting of iridium, iron, cobalt, platinum, palladium, molybdenum, and tantalum; therefore, when the silicon nitride spacer is removed by etching, the metal silicide layer is not damaged.
    Type: Application
    Filed: April 26, 2006
    Publication date: April 5, 2007
    Inventors: Chih-Ning Wu, Chung - Ju Lee, Wei-Tsun Shiau
  • Publication number: 20070072402
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes defining an electrode on a semiconductor substrate; forming a spacer on at least one sidewall of the electrode; performing a process operation on the semiconductor substrate using the spacer as a mask and forming a material layer on the top or the surface of the semiconductor substrate and the electrode; and removing the spacer by steps of performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant. With respect to another aspect, a method of removing a spacer is also disclosed. The method includes performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant.
    Type: Application
    Filed: September 29, 2005
    Publication date: March 29, 2007
    Inventors: Chung - Ju Lee, Chih-Ning Wu, Wei-Tsun Shiau
  • Publication number: 20070072353
    Abstract: A method of fabricating strained-silicon transistors includes providing a semiconductor substrate, in which the semiconductor substrate contains a gate structure thereon; performing an etching process to form two recesses corresponding to the gate structure within the semiconductor substrate; performing an oxygen flush on the semiconductor substrate; performing a cleaning process on the semiconductor substrate; and performing a selective epitaxial growth (SEG) to form an epitaxial layer in each recess for forming a source/drain region.
    Type: Application
    Filed: September 23, 2005
    Publication date: March 29, 2007
    Inventors: Chih-Ning Wu, Hsin Tai, Chung - Ju Lee, Wei-Tsun Shiau
  • Publication number: 20070072358
    Abstract: A method of manufacturing a metal-oxide-semiconductor transistor device is disclosed. In the method, a silicon nitride spacer is formed and will be removed after an ion implantation process to form a source/drain region and a salicide process to form a metal silicide layer on the surface of the source/drain region and the gate electrode. The metal silicide layer is formed to comprise silicon (Si), nickel (Ni) and at least one metal selected from a group consisting of iridium (Ir), iron (Fe), cobalt (Co), platinum (Pt), palladium (Pd), molybdenum (Mo), and tantalum (Ta); therefore, when the silicon nitride spacer is removed by etching, the metal silicide layer is not damaged.
    Type: Application
    Filed: September 29, 2005
    Publication date: March 29, 2007
    Inventors: Chih-Ning Wu, Chung - Ju Lee, Wei-Tsun Shiau
  • Publication number: 20070072378
    Abstract: A method of manufacturing a metal-oxide-semiconductor transistor device is disclosed. In the method, a silicon nitride spacer is formed and will be removed after an ion implantation process used to form a source/drain region and a salicide process used to form a metal silicide layer on the surface of the source/drain region and the gate electrode. The metal silicide layer is formed to comprise silicon (Si), nickel (Ni) and at least one metal selected from a group consisting of iridium (Ir), iron (Fe), cobalt (Co), platinum (Pt), palladium (Pd), molybdenum (Mo), and tantalum (Ta); therefore, when the silicon nitride spacer is removed by etching, the metal silicide layer is not damaged.
    Type: Application
    Filed: August 8, 2006
    Publication date: March 29, 2007
    Inventors: Chih-Ning Wu, Chung - Ju Lee, Wei-Tsun Shiau
  • Patent number: 7196019
    Abstract: A method of removing spacers after forming a MOS transistor on a wafer. The MOS transistor comprises a gate disposed on the substrate, spacers disposed on the sidewalls of the gate and a source and a drain region in the substrate beside the spacers. The spacers are removed by performing a wet etching process in the dark such that during the spacer removal process, the source and the drain region in a MOS transistor can be prevented from damages.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: March 27, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Charlie C J Lee, Kuan-Yang Liao
  • Publication number: 20070063290
    Abstract: A method for forming a metal oxide semiconductor (MOS) transistor is provided. First, a gate structure is formed over a substrate. Then, offset spacers are formed on respective sidewalls of the gate structure. A first ion implantation process is performed to form a lightly doped drain (LDD) in the substrate beside the gate structure. Other spacers are formed on respective sidewalls of the offset spacers. Thereafter, a second ion implantation process is performed to form source/drain region in the substrate beside the spacers. Then, a metal silicide layer is formed on the surface of the source and the drain. An oxide layer is formed on the surface of the metal silicide layer. The spacers are removed and an etching stop layer is formed on the substrate. With the oxide layer over the metal silicide layer, the solvent for removing the spacers is prevented from damaging the metal silicide layer.
    Type: Application
    Filed: September 20, 2005
    Publication date: March 22, 2007
    Inventors: Po-Chao Tsao, Chang-Chi Huang, Ming-Tsung Chen, Yi-Yiing Chiang, Yu-Lan Chang, Chung-Ju Lee, Chih-Ning Wu, Kuan-Yang Liao
  • Publication number: 20070066041
    Abstract: A method for forming a metal oxide semiconductor (MOS) transistor is provided. First, a gate structure is formed over a substrate. Then, offset spacers are formed on respective sidewalls of the gate structure. A first ion implantation process is performed to form a lightly doped drain (LDD) in the substrate beside the gate structure. Other spacers are formed on respective sidewalls of the offset spacers. Thereafter, a second ion implantation process is performed to form source/drain region in the substrate beside the spacers. Then, a metal silicide layer is formed on the surface of the source and the drain. An oxide layer is formed on the surface of the metal silicide layer. The spacers are removed and an etching stop layer is formed on the substrate. With the oxide layer over the metal silicide layer, the solvent for removing the spacers is prevented from damaging the metal silicide layer.
    Type: Application
    Filed: September 15, 2006
    Publication date: March 22, 2007
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Chao Tsao, Chang-Chi Huang, Ming-Tsung Chen, Yi-Yiing Chiang, Yu-Lan Chang, Chung-Ju Lee, Chih-Ning Wu, Kuan-Yang Liao
  • Publication number: 20070054447
    Abstract: A multi-step etching method is provided. First, a substrate including a gate over the substrate and a spacer over the gate is provided. Then, an anisotropic etching step is performed for etching a first region and a second region in the substrate at two sides of the gate. Thereafter, an isotropic etching step is performed for etching a first external region under the spacer and adjacent to the first region, and etching a second external region under the spacer and adjacent to the second region. Then, a filling step is performed for filling a material into the first region, the first external region, the second region and the second external region.
    Type: Application
    Filed: September 7, 2005
    Publication date: March 8, 2007
    Inventors: Hsin Tai, Chung-Ju Lee, Chih-Ning Wu
  • Publication number: 20070045227
    Abstract: A method of stripping photoresist is provided. First, a first dielectric layer including a plurality of contact structures is provided. Then, a barrier layer is formed over the first dielectric layer. Thereafter, a second dielectric layer is formed over the barrier layer. Next, a patterned photoresist layer is formed over the second dielectric layer. Then, the patterned photoresist layer is used as a mask layer for patterning the second dielectric layer and the barrier layer to expose a portion of the contact structures. Furthermore, the patterned photoresist layer is removed by using an oxygen-free reducing gas. Since the reducing gas does not contain oxygen, the process can prevent oxide from forming on the contact structures, thereby reducing resistance of the contact structures.
    Type: Application
    Filed: August 31, 2005
    Publication date: March 1, 2007
    Inventors: Chih-Ning Wu, Hsin Tai, Yi-Yiing Chiang
  • Patent number: 7172976
    Abstract: An extrusion-free wet cleaning process for post-etch Cu-dual damascene structures is developed. The process includes the following steps: (1). providing a wafer having a silicon substrate and at least one post-etch Cu-dual damascene structure, the post-etch Cu-dual damascene structure having a via structure exposing a portion of a Cu wiring line electrically connected with an N+ diffusion region of the silicon substrate, and a trench structure formed on the via structure; (2). applying a diluted H2O2 solution on the wafer to slightly oxidize the surface of the exposed Cu wiring line; (3). washing away cupric oxide generated in the oxidation step by means of an acidic cupric oxide cleaning solution containing diluted HF, NH4F or NH2OH; and (4). providing means for preventing Cu reduction reactions on the Cu wiring line.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: February 6, 2007
    Assignee: United Microelectronics Corp.
    Inventor: Chih-Ning Wu
  • Patent number: 7135400
    Abstract: A method for avoiding resist poisoning during a damascene process is disclosed. A semiconductor substrate is provided with a low-k dielectric layer (k?2.9) thereon, a SiC layer over the low-k dielectric layer, and a blocking layer over the SiC layer. The blocking layer is used to prevent unpolymerized precursors diffused out from the low-k dielectric layer from contacting an overlying resist. A bottom anti-reflection coating (BARC) layer is formed on the blocking layer. A resist layer is formed on the BARC layer, the resist layer having an opening to expose a portion of the BARC layer. A damascene structure is formed in the low-k dielectric layer by etching the BARC layer, the blocking layer, the SiC layer, and the low-k dielectric layer through the opening.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: November 14, 2006
    Assignee: United Microelectronics Corp.
    Inventors: Wen-Liang Lien, Charlie C J Lee, Chih-Ning Wu, Jain-Hon Chen