Patents by Inventor Chih-Sheng Chang

Chih-Sheng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200373198
    Abstract: A method for fabricating metal interconnect structure includes the steps of: forming a first metal interconnection in a first inter-metal dielectric (IMD) layer on a substrate; forming a cap layer on the first metal interconnection; forming a second IMD layer on the cap layer; performing a first etching process to remove part of the second IMD layer for forming an opening; performing a plasma treatment process; and performing a second etching process to remove polymers from bottom of the opening.
    Type: Application
    Filed: August 12, 2020
    Publication date: November 26, 2020
    Inventors: Yi-How Chou, Tzu-Hao Fu, Tsung-Yin Hsieh, Chih-Sheng Chang, Shih-Chun Tsai, Kun-Chen Ho, Yang-Chou Lin
  • Publication number: 20200365682
    Abstract: A negative capacitance device includes a semiconductor layer. An interfacial layer is disposed over the semiconductor layer. An amorphous dielectric layer is disposed over the interfacial layer. A ferroelectric layer is disposed over the amorphous dielectric layer. A metal gate electrode is disposed over the ferroelectric layer. At least one of the following is true: the interfacial layer is doped; the amorphous dielectric layer has a nitridized outer surface; a diffusion-barrier layer is disposed between the amorphous dielectric layer and the ferroelectric layer; or a seed layer is disposed between the amorphous dielectric layer and the ferroelectric layer.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Chun-Chieh Lu, Cheng-Yi Peng, Chien-Hsing Lee, Ling-Yen Yeh, Chih-Sheng Chang, Carlos H. Diaz
  • Patent number: 10841547
    Abstract: The present invention provides a method for fabricating small right angle prism mirrors, projecting system, and small right angle prism mirrors fabricated by a semiconductor process. The method comprises: coating a reflecting layer on a top surface of a glass substrate; forming an optical glue layer on a bottom surface of the glass substrate; utilizing a mold to form a 3D shape on the optical glue layer; exposing the optical glue layer having the 3D shape to solidify the optical glue layer having the 3D shape and combine the glass substrate having the reflecting layer and the optical glue layer having the 3D shape; removing the mold to form a small prism array; and dicing the small prism array to generate a plurality of small right angle prism mirrors.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: November 17, 2020
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Han-Yi Kuo, Yin-Dong Lu, Shi-Jen Wu, Chih-Sheng Chang, Teng-Te Huang
  • Patent number: 10825899
    Abstract: A method of fabricating a semiconductor device includes forming a fin structure on a substrate, forming a channel layer on a sidewall and a top surface of the fin structure, and forming a gate stack over the channel layer. The channel layer includes a two-dimensional (2D) material. The gate stack includes a ferroelectric layer.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: November 3, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh Lu, Meng-Hsuan Hsiao, Tung-Ying Lee, Ling-Yen Yeh, Chih-Sheng Chang, Carlos H. Diaz
  • Patent number: 10818562
    Abstract: A method for testing a semiconductor structure includes forming a dielectric layer over a test region of a substrate. A cap layer is formed over the dielectric layer. The dielectric layer and the cap layer are annealed. The annealed cap layer is removed. A ferroelectricity of the annealed dielectric layer is in-line tested.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: October 27, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shiang Lin, Chia-Cheng Ho, Chun-Chieh Lu, Cheng-Yi Peng, Chih-Sheng Chang
  • Publication number: 20200328219
    Abstract: A method includes providing a substrate having an n-type fin-like field-effect transistor (NFET) region and forming a fin structure in the NFET region. The fin structure includes a first layer having a first semiconductor material, and a second layer under the first layer and having a second semiconductor material different from the first semiconductor material. The method further includes forming a patterned hard mask to fully expose the fin structure in gate regions of the NFET region and partially expose the fin structure in at least one source/drain (S/D) region of the NFET region. The method further includes oxidizing the fin structure not covered by the patterned hard mask, wherein the second layer is oxidized at a faster rate than the first layer. The method further includes forming an S/D feature over the at least one S/D region of the NFET region.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventors: Kuo-Cheng Ching, Ka-Hing Fung, Chih-Sheng Chang, Zhiqiang Wu
  • Publication number: 20200321339
    Abstract: The present disclosure describes a fin-like field-effect transistor (FinFET). The device includes one or more fin structures over a substrate, each with source/drain (S/D) features and a high-k/metal gate (HK/MG). A first HK/MG in a first gate region wraps over an upper portion of a first fin structure, the first fin structure including an epitaxial silicon (Si) layer as its upper portion and an epitaxial growth silicon germanium (SiGe), with a silicon germanium oxide (SiGeO) feature at its outer layer, as its middle portion, and the substrate as its bottom portion. A second HK/MG in a second gate region, wraps over an upper portion of a second fin structure, the second fin structure including an epitaxial SiGe layer as its upper portion, an epitaxial Si layer as it upper middle portion, an epitaxial SiGe layer as its lower middle portion, and the substrate as its bottom portion.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Kuo-Cheng Ching, Ka-Hing Fung, Chih-Sheng Chang, Zhiqiang Wu
  • Patent number: 10784153
    Abstract: A method for fabricating metal interconnect structure includes the steps of: forming a first metal interconnection in a first inter-metal dielectric (IMD) layer on a substrate; forming a cap layer on the first metal interconnection; forming a second IMD layer on the cap layer; performing a first etching process to remove part of the second IMD layer for forming an opening; performing a plasma treatment process; and performing a second etching process to remove polymers from bottom of the opening.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: September 22, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-How Chou, Tzu-Hao Fu, Tsung-Yin Hsieh, Chih-Sheng Chang, Shih-Chun Tsai, Kun-Chen Ho, Yang-Chou Lin
  • Patent number: 10784362
    Abstract: In a method of manufacturing a negative capacitance structure, a dielectric layer is formed over a substrate. A first metallic layer is formed over the dielectric layer. After the first metallic layer is formed, an annealing operation is performed, followed by a cooling operation. A second metallic layer is formed. After the cooling operation, the dielectric layer becomes a ferroelectric dielectric layer including an orthorhombic crystal phase. The first metallic film includes a oriented crystalline layer.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: September 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh Lu, Carlos H. Diaz, Chih-Sheng Chang, Cheng-Yi Peng, Ling-Yen Yeh
  • Patent number: 10741678
    Abstract: In a method of manufacturing a negative capacitance structure, a dielectric layer is formed over a substrate. A first metallic layer is formed over the dielectric layer. After the first metallic layer is formed, an annealing operation is performed, followed by a cooling operation. A second metallic layer is formed. After the cooling operation, the dielectric layer becomes a ferroelectric dielectric layer including an orthorhombic crystal phase.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: August 11, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh Lu, Carlos H. Diaz, Chih-Sheng Chang, Cheng-Yi Peng, Ling-Yen Yeh, Chien-Hsing Lee
  • Patent number: 10732209
    Abstract: A semiconductor test device for measuring a contact resistance includes: first fin structures, upper portions of the first fin structures protruding from an isolation insulating layer; epitaxial layers formed on the upper portions of the first fin structures, respectively; first conductive layers formed on the epitaxial layers, respectively; a first contact layer disposed on the first conductive layers at a first point; a second contact layer disposed on the first conductive layers at a second point apart from the first point; a first pad coupled to the first contact layer via a first wiring; and a second pad coupled to the second contact layer via a second wiring. The semiconductor test device is configured to measure the contact resistance between the first contact layer and the first fin structures by applying a current between the first pad and the second pad.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Peng, Chia-Cheng Ho, Ming-Shiang Lin, Chih-Sheng Chang, Carlos H. Diaz
  • Patent number: 10734472
    Abstract: A negative capacitance device includes a semiconductor layer. An interfacial layer is disposed over the semiconductor layer. An amorphous dielectric layer is disposed over the interfacial layer. A ferroelectric layer is disposed over the amorphous dielectric layer. A metal gate electrode is disposed over the ferroelectric layer. At least one of the following is true: the interfacial layer is doped; the amorphous dielectric layer has a nitridized outer surface; a diffusion-barrier layer is disposed between the amorphous dielectric layer and the ferroelectric layer; or a seed layer is disposed between the amorphous dielectric layer and the ferroelectric layer.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh Lu, Cheng-Yi Peng, Chien-Hsing Lee, Ling-Yen Yeh, Chih-Sheng Chang, Carlos H. Diaz
  • Patent number: 10732658
    Abstract: A correction control module for a power factor correction circuit comprises a current sampling unit, an adjustment unit and a control unit. The current sampling unit generates a sampling current based on the operation of a power factor correction circuit. The adjustment unit is connected to the current sampling unit and receives the sampling current. The adjustment unit is composed of a fixed resistance branch and a variable resistance branch connected in parallel with the fixed resistance branch, and the variable resistance and fixed resistance branches receive the sampling current to generate a node voltage. The control unit controls a resistance of the variable resistance branch based on an input voltage and an output voltage of the power factor correction circuit. Thus, an equivalent resistance of the variable resistance branch and the fixed resistance branch is changed according to an operating state of the power factor correction circuit.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: August 4, 2020
    Assignee: SEA SONIC ELECTRONICS CO., LTD.
    Inventors: Sheng-Chien Chou, Chih-Sheng Chang
  • Patent number: 10700075
    Abstract: A method includes providing a substrate having an n-type fin-like field-effect transistor (NFET) region and forming a fin structure in the NFET region. The fin structure includes a first layer having a first semiconductor material, and a second layer under the first layer and having a second semiconductor material different from the first semiconductor material. The method further includes forming a patterned hard mask to fully expose the fin structure in gate regions of the NFET region and partially expose the fin structure in at least one source/drain (S/D) region of the NFET region. The method further includes oxidizing the fin structure not covered by the patterned hard mask, wherein the second layer is oxidized at a faster rate than the first layer. The method further includes forming an S/D feature over the at least one S/D region of the NFET region.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 30, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ka-Hing Fung, Chih-Sheng Chang, Zhiqiang Wu
  • Patent number: 10692867
    Abstract: The present disclosure describes a fin-like field-effect transistor (FinFET). The device includes one or more fin structures over a substrate, each with source/drain (S/D) features and a high-k/metal gate (HK/MG). A first HK/MG in a first gate region wraps over an upper portion of a first fin structure, the first fin structure including an epitaxial silicon (Si) layer as its upper portion and an epitaxial growth silicon germanium (SiGe), with a silicon germanium oxide (SiGeO) feature at its outer layer, as its middle portion, and the substrate as its bottom portion. A second HK/MG in a second gate region, wraps over an upper portion of a second fin structure, the second fin structure including an epitaxial SiGe layer as its upper portion, an epitaxial Si layer as it upper middle portion, an epitaxial SiGe layer as its lower middle portion, and the substrate as its bottom portion.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ka-Hing Fung, Chih-Sheng Chang, Zhiqiang Wu
  • Patent number: 10670641
    Abstract: A semiconductor test device for measuring a contact resistance includes: first fin structures, upper portions of the first fin structures protruding from an isolation insulating layer; epitaxial layers formed on the upper portions of the first fin structures, respectively; first conductive layers formed on the epitaxial layers, respectively; a first contact layer disposed on the first conductive layers at a first point; a second contact layer disposed on the first conductive layers at a second point apart from the first point; a first pad coupled to the first contact layer via a first wiring; and a second pad coupled to the second contact layer via a second wiring. The semiconductor test device is configured to measure the contact resistance between the first contact layer and the first fin structures by applying a current between the first pad and the second pad.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Peng, Chia-Cheng Ho, Ming-Shiang Lin, Chih-Sheng Chang, Carlos H. Diaz
  • Publication number: 20200135788
    Abstract: A wafer-level optical structure includes at least two optical lens sets disposed on an optically transparent wafer, at least one trench disposed between two adjacent optical lens sets to divide the two adjacent optical lens sets, at least one spacer disposed between two adjacent optical lens sets to be correspondingly and partially disposed in the trench, and an adhesive disposed inside the trench.
    Type: Application
    Filed: October 24, 2018
    Publication date: April 30, 2020
    Inventors: Chih-Sheng Chang, Teng-Te Huang, Shu-Hao Hsu, Jun-Yu Zhan
  • Patent number: 10636829
    Abstract: A wafer-level optical structure includes at least two optical lens sets disposed on an optically transparent wafer, at least one trench disposed between two adjacent optical lens sets to divide the two adjacent optical lens sets, at least one spacer disposed between two adjacent optical lens sets to be correspondingly and partially disposed in the trench, and an adhesive disposed inside the trench.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: April 28, 2020
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Chih-Sheng Chang, Teng-Te Huang, Shu-Hao Hsu, Jun-Yu Zhan
  • Publication number: 20200105624
    Abstract: A semiconductor device includes a first source/drain feature adjoining first nanostructures, and a first multilayer work function structure surrounding the first nanostructures. The first multilayer work function structure includes a first middle dielectric layer around the first nanostructures and a first metal layer around and in contact with the first middle dielectric layer. The semiconductor device also includes a second source/drain feature adjoining second nanostructures, and a second multilayer work function structure surrounding the second nanostructures. The second multilayer work function structure includes a second middle dielectric layer around the second nanostructures and a second metal layer around and in contact with the second middle dielectric layer. The first middle dielectric layer and the second middle dielectric layer are made of dielectric materials. The second metal layer and the first metal layer are made of the same metal material.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Sheng CHEN, Tzu-Chiang CHEN, Cheng-Hsien WU, Chih-Chieh YEH, Chih-Sheng CHANG
  • Publication number: 20200103633
    Abstract: A wafer-level homogeneous bonding optical structure includes two optical lens sets disposed on an optically transparent wafer and a spacer disposed on the optically transparent wafer and between the two optical lens sets. The spacer is homogeneously bonded to and integrated with the optically transparent wafer in the absence of a heterogeneous adhesive.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: Chih-Sheng Chang, Teng-Te Huang, Shu-Hao Hsu, Jun-Yu Zhan, Jen-Hui Lai