Patents by Inventor Chih-Sung Chang
Chih-Sung Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150116471Abstract: A method, an apparatus and a storage medium for passerby detection, adapted to an electronic apparatus having an image capturing unit, are provided. In the method, an image is captured by the image capturing unit. At least one face appeared in the image is detected, and a position of at least one characteristic of each of the faces is obtained. A characteristic value of each of the faces is calculated according to the position of each characteristic. A ratio of at least one of the characteristic values to a reference value is calculated and compared with a threshold. When the ratio is smaller than the threshold, it is determined that at least one passerby is included in the image.Type: ApplicationFiled: March 5, 2014Publication date: April 30, 2015Applicant: Wistron CorporationInventor: Chih-Sung Chang
-
Publication number: 20140367726Abstract: A semiconductor light-emitting device including an epitaxial structure, a first electrode structure, a second electrode structure, a light reflective metal layer, a resistivity-enhancing structure and a protection ring is provided. The light-emitting epitaxial structure has a first surface and a second surface. The light-emitting epitaxial structure has a first zone and a second zone. The first electrode structure is disposed within the first zone. The second electrode structure is disposed within the second zone. The light reflective metal layer is disposed adjacent to the second surface. The resistivity-enhancing structure is disposed in contact with a surface of the light reflective metal layer and corresponding to a position of the first electrode structure. The protection ring has a first portion and a second portion. The first portion surrounds a sidewall of the light reflective metal layer. The second portion corresponds to the second electrode structure.Type: ApplicationFiled: August 29, 2014Publication date: December 18, 2014Inventors: Wei-Yu Yen, Li-Ping Chou, Fu-Bang Chen, Chih-Sung Chang
-
Patent number: 8896007Abstract: A semiconductor light-emitting device comprises a light-emitting epitaxial structure, a first electrode structure, a light reflective layer and an resistivity-enhancing structure. The light-emitting epitaxial structure has a first surface and a second surface opposite to the first surface. The first electrode structure is electrically connected to the first surface. The light reflective layer is disposed adjacent to the second surface. The resistivity-enhancing structure is disposed adjacent to the light reflective layer and away from the second surface corresponding to a position of the first electrode structure.Type: GrantFiled: January 7, 2013Date of Patent: November 25, 2014Assignee: High Power Opto, Inc.Inventors: Wei-Yu Yen, Li-Ping Chou, Fu-Bang Chen, Chih-Sung Chang
-
Patent number: 8884323Abstract: A semiconductor light-emitting device is provided. The semiconductor light-emitting device includes a buffer layer, a light-emitting layer, a first-conductivity semiconductor layer, a first light reflecting layer, a protective structure, and an adhesive layer. The first-conductivity semiconductor layer is disposed between the buffer layer and a first side of the light-emitting layer. The first light reflecting layer is disposed between the first-conductivity semiconductor layer and the buffer layer. The protective structure is disposed between the first reflecting layer and the buffer layer. The adhesive layer is disposed between the first-conductivity semiconductor layer and the protective structure.Type: GrantFiled: March 28, 2013Date of Patent: November 11, 2014Assignee: High Power Opto. Inc.Inventors: Wei-Yu Yen, Li-Ping Chou, Fu-Bang Chen, Chih-Sung Chang
-
Patent number: 8816379Abstract: A reflection curved mirror structure is applied to a vertical light-emitting diode (LED) which includes a P-type electrode, a permanent substrate, a binding layer, a buffer layer, a mirror layer, a P-type semiconductor layer, a light-emitting layer, an N-type semiconductor layer and an N-type electrode that are stacked in sequence. Between the P-type semiconductor layer and the mirror layer is a filler. The filler is located right below the N-type electrode to form a protruding curved surface facing the light-emitting layer. The mirror layer forms a mirror structure along the protruding curved surface. With reflection provided by the mirror structure, excited light from the light-emitting layer is reflected towards two sides, so that the excited light can dodge the N-type electrode without being shielded to increase light extraction efficiency.Type: GrantFiled: July 10, 2013Date of Patent: August 26, 2014Assignee: High Power Opto, Inc.Inventors: Fu-Bang Chen, Wei-Yu Yen, Li-Ping Chou, Wei-Chun Tseng, Chih-Sung Chang
-
Patent number: 8766303Abstract: A light-emitting diode (LED) with a mirror protection layer includes sequentially stacked an N-type electrode, an N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, a metal mirror layer, a protection layer, a buffer layer, a binding layer, a permanent substrate, and a P-type electrode. The protection layer is made of metal oxide, and has a hollow frame for covering or supporting edges of the metal mirror layer.Type: GrantFiled: August 31, 2012Date of Patent: July 1, 2014Assignee: High Power Opto. Inc.Inventors: Wei-Yu Yen, Li-Ping Chou, Fu-Bang Chen, Chih-Sung Chang
-
Patent number: 8748928Abstract: A continuous reflection curved mirror structure is applied to a vertical light-emitting diode (LED) which includes a P-type electrode, a permanent substrate, a binding layer, a buffer layer, a mirror layer, a P-type semiconductor layer, a light-emitting layer, an N-type semiconductor layer and an N-type electrode that are stacked in sequence. Between the P-type semiconductor layer and the mirror layer is a filler. The filler is located right below the N-type electrode to form a protruding continuous curved surface facing the light-emitting layer. The mirror layer forms a mirror structure along the protruding continuous curved surface. With reflection provided by the mirror structure, excited light from the light-emitting layer is reflected towards two sides, so that the excited light can dodge the N-type electrode without being shielded to increase light extraction efficiency.Type: GrantFiled: July 10, 2013Date of Patent: June 10, 2014Assignee: High Power Opto, Inc.Inventors: Fu-Bang Chen, Wei-Yu Yen, Li-Ping Chou, Wei-Chun Tseng, Chih-Sung Chang
-
Publication number: 20140151711Abstract: A semiconductor light-emitting device is provided. The semiconductor light-emitting device includes a buffer layer, a light-emitting layer, a first-conductivity semiconductor layer, a first light reflecting layer, a protective structure, and an adhesive layer. The first-conductivity semiconductor layer is disposed between the buffer layer and a first side of the light-emitting layer. The first light reflecting layer is disposed between the first-conductivity semiconductor layer and the buffer layer. The protective structure is disposed between the first reflecting layer and the buffer layer. The adhesive layer is disposed between the first-conductivity semiconductor layer and the protective structure.Type: ApplicationFiled: March 28, 2013Publication date: June 5, 2014Applicant: High Power Opto. Inc.Inventors: Wei-Yu Yen, Li-Ping Chou, Fu-Bang Chen, Chih-Sung Chang
-
Publication number: 20140139424Abstract: A facial expression control system, a facial expression control method, and a computer system thereof are disclosed. The facial expression control system includes a face detection module, a database, and a processing module. The face detection module is used for determining whether a facial expression feature is detected in a captured image. The database is used for storing a control parameter table, wherein the control parameter table is corresponding to the facial expression feature. If the face detection module detects the facial expression feature, the control parameter table of the database is accessed according to the facial expression feature to get an encode signal and transmitted to the processing module. The processing module is used for generating a control signal according to the encode signal.Type: ApplicationFiled: October 21, 2013Publication date: May 22, 2014Applicant: Wistron CorporationInventor: Chih-Sung CHANG
-
Patent number: 8716740Abstract: An electrode structure for an LED includes a plurality of blind holes and a plurality of N-type metal electrodes. The LED comprises, in this order by stacking, an intrinsic semiconductor layer, an N-type semiconductor layer, a light emitting layer, a P-type semiconductor layer, a mirror layer, a buffer layer, a bonding layer, a permanent substrate and a P-type electrode. The blind holes are distributed in a pattern and run through the intrinsic semiconductor layer to reach the N-type semiconductor layer. The N-type metal electrodes respectively run through the blind holes to connect the N-type semiconductor layer. Through a 3D contact interface formed by the blind hole, not only contact impedance between the N-type metal electrode and the N-type semiconductor layer can be reduced, the N-type metal electrode also can be firmly held in the blind hole without peeling off.Type: GrantFiled: December 21, 2012Date of Patent: May 6, 2014Assignee: Highpower Opto. Inc.Inventors: Wei-Yu Yen, Fu-Bang Chen, Chih-Sung Chang
-
Patent number: 8694243Abstract: An optimization method for a navigation device includes recording a plurality of coordinate variation data, analyzing the plurality of coordinate variation data to generate an analysis result, generating at least one behavior rule according to the analysis result, and adjusting a navigation result of the navigation device according to the at least one behavior rule.Type: GrantFiled: April 21, 2010Date of Patent: April 8, 2014Assignee: Wistron CorporationInventor: Chih-Sung Chang
-
Publication number: 20140070247Abstract: A semiconductor light-emitting device comprises a light-emitting epitaxial structure, a first electrode structure, a light reflective layer and an resistivity-enhancing structure. The light-emitting epitaxial structure has a first surface and a second surface opposite to the first surface. The first electrode structure is electrically connected to the first surface. The light reflective layer is disposed adjacent to the second surface. The resistivity-enhancing structure is disposed adjacent to the light reflective layer and away from the second surface corresponding to a position of the first electrode structure.Type: ApplicationFiled: January 7, 2013Publication date: March 13, 2014Applicant: HIGH POWER OPTO. INC.Inventors: Wei-Yu Yen, Li-Ping Chou, Fu-Bang Chen, Chih-Sung Chang
-
Publication number: 20140073075Abstract: A method for separating a light-emitting diode (LED) from a substrate comprises the following steps. First, a substrate is provided which includes a junction surface and a bottom surface far away from the junction surface. Then a plurality holes are formed on the junction surface. An LED structure is further grown on the junction surface, and includes a junction portion bonded to the junction surface. The bottom surface is then polished to be shrunk to communicate with the holes. Finally, the junction portion is etched by an etching liquid via the holes to separate the LED structure from the substrate. Accordingly, by forming the holes, the LED structure and the substrate can be separated through polishing and etching processes, thereby providing a high yield rate as well as reduced production costs.Type: ApplicationFiled: September 12, 2012Publication date: March 13, 2014Inventors: Wei-Yu YEN, Fu-Bang Chen, Chih-Sung Chang
-
Publication number: 20140061695Abstract: A light-emitting diode (LED) with a mirror protection layer includes sequentially stacked an N-type electrode, an N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, a metal mirror layer, a protection layer, a buffer layer, a binding layer, a permanent substrate, and a P-type electrode. The protection layer is made of metal oxide, and has a hollow frame for covering or supporting edges of the metal mirror layer. Accordingly, the metal mirror layer can be protected by the protection layer to prevent from oxidation in subsequent processes and to prevent metal deterioration during high-current operations. Thus the metal mirror layer can maintain high reflectivity, thereby increasing light extraction efficiency and electrical stability of the LED.Type: ApplicationFiled: August 31, 2012Publication date: March 6, 2014Inventors: WEI-YU YEN, Li-Ping Chou, Fu-Bang Chen, Chih-Sung Chang
-
Publication number: 20130328098Abstract: A buffer layer structure for an LED is provided. The LED includes a P-type electrode, a permanent substrate, a binding layer, a buffer layer, a mirror layer, a P-type semiconductor layer, a light-emitting layer, an N-type semiconductor layer, and an N-type electrode that are stacked in sequence. The buffer layer is a composite material, and includes at least one first material and at least one second material that are alternately stacked. The first material and the second material are mutually diffused to generate gradient variation after the buffer layer is processed by a thermal treatment. Thus, an interface effect and thermal stress between difference interfaces are eliminated, and a channel for ion diffusion is blocked for enhancing light-emitting efficiency of the LED.Type: ApplicationFiled: August 13, 2013Publication date: December 12, 2013Applicant: HIGH POWER OPTO. INC.Inventors: Li-Ping Chou, WEI-YU YEN, Fu-Bang Chen, Chih-Sung Chang
-
Publication number: 20130313605Abstract: A light-emitting diode (LED) electrode contact structure for an LED is provided. The LED includes a plurality of N-type electrodes, an N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, a mirror layer, a buffer layer, a binding layer, a permanent substrate and a P-type electrode that are stacked in sequence. The N-type semiconductor layer has an irregular surface and a plurality of contact platforms. The contact platforms are formed and distributed on the N-type semiconductor layer in a patterned arrangement, and the irregular surface is formed at areas on the N-type semiconductor layer without the contact platforms. The N-type electrodes are respectively formed on the contact platforms. Through flat interfaces provided by the contact platforms, voids are not generated when the N-type electrodes are formed on the contact platforms. Therefore, satisfactory electrical contact is ensured to thereby increase light emitting efficiency.Type: ApplicationFiled: May 23, 2012Publication date: November 28, 2013Inventors: Li-Ping Chou, Fu-Bang Chen, Chih-Sung Chang
-
Publication number: 20130313598Abstract: An LED electrode contact structure for an LED is provided. The LED includes a plurality of N-type electrodes, an N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, a mirror layer, a buffer layer, a binding layer, a permanent substrate and a P-type electrode that are stacked in sequence. The N-type semiconductor layer has an irregular surface and a plurality of contact platforms. The contact platforms are formed and distributed on the N-type semiconductor layer in a patterned arrangement, and the irregular surface is formed at areas on the N-type semiconductor layer without the contact platforms. The N-type electrodes are respectively formed on the contact platforms. The contact platforms have roughness between 0.01 ?m and 0.1 ?m, such that not only voids are not generated but also good adhesion is provided to prevent carrier confinement and disengagement. Therefore, satisfactory electrical contact is ensured to thereby increase light emitting efficiency.Type: ApplicationFiled: July 23, 2013Publication date: November 28, 2013Applicant: HIGH POWER OPTO. INC.Inventors: Li-Ping CHOU, Fu-Bang CHEN, Chih-Sung CHANG
-
Publication number: 20130307012Abstract: A tension release layer structure is applied to an LED which includes a P-type electrode, a permanent substrate, a binding layer, a tension release layer, a mirror layer, a P-type semiconductor layer, a light-emitting layer, an N-type semiconductor layer and an N-type electrode that are stacked in sequence. The tension release layer is made of a complex material including at least two material elements with boundaries that are blended with each other. As the complex material in the tension release layer does not have apparent interface separation, stress between interface effect and materials can be eliminated to increase light-emitting efficiency and production yield of the LED.Type: ApplicationFiled: May 15, 2012Publication date: November 21, 2013Inventors: Li-Ping Chou, Wei-Yu Yen, Fu-Bang Chen, Chih-Sung Chang
-
Publication number: 20130307008Abstract: A continuous reflection curved mirror structure is applied to a vertical light-emitting diode (LED) which includes a P-type electrode, a permanent substrate, a binding layer, a buffer layer, a mirror layer, a P-type semiconductor layer, a light-emitting layer, an N-type semiconductor layer and an N-type electrode that are stacked in sequence. Between the P-type semiconductor layer and the mirror layer is a filler. The filler is located right below the N-type electrode to form a protruding continuous curved surface facing the light-emitting layer. The mirror layer forms a mirror structure along the protruding continuous curved surface. With reflection provided by the mirror structure, excited light from the light-emitting layer is reflected towards two sides, so that the excited light can dodge the N-type electrode without being shielded to increase light extraction efficiency.Type: ApplicationFiled: July 10, 2013Publication date: November 21, 2013Inventors: Fu-Bang Chen, Wei-Yu Yen, Li-Ping Chou, Wei-Chun Tseng, Chih-Sung Chang
-
Publication number: 20130307009Abstract: A reflection curved mirror structure is applied to a vertical light-emitting diode (LED) which includes a P-type electrode, a permanent substrate, a binding layer, a buffer layer, a mirror layer, a P-type semiconductor layer, a light-emitting layer, an N-type semiconductor layer and an N-type electrode that are stacked in sequence. Between the P-type semiconductor layer and the mirror layer is a filler. The filler is located right below the N-type electrode to form a protruding curved surface facing the light-emitting layer. The mirror layer forms a mirror structure along the protruding curved surface. With reflection provided by the mirror structure, excited light from the light-emitting layer is reflected towards two sides, so that the excited light can dodge the N-type electrode without being shielded to increase light extraction efficiency.Type: ApplicationFiled: July 10, 2013Publication date: November 21, 2013Inventors: Fu-Bang Chen, Wei-Yu Yen, Li-Ping Chou, Wei-Chun Tseng, Chih-Sung Chang