Patents by Inventor Chih-Ting Yeh
Chih-Ting Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12248019Abstract: A diode test module and method applicable to the diode test module are provided. A substrate having first conductivity type and an epitaxial layer having second conductivity type on the substrate are formed. A well region having first conductivity type is formed in the epitaxial layer. A first and second heavily doped region having second conductivity type are theoretically formed in the well and connected to a first and second I/O terminal, respectively. Isolation trench is formed there in between for electrical isolation. A monitor cell comprising a third and fourth heavily doped region is provided in a current conduction path between the first and second I/O terminal when inputting an operation voltage. By employing the monitor cell, the invention achieves to determine if the well region is missing by measuring whether a leakage current is generated without additional testing equipment and time for conventional capacitance measurements.Type: GrantFiled: November 29, 2021Date of Patent: March 11, 2025Assignee: AMAZING MICROELECTRONIC CORP.Inventors: Chih-Ting Yeh, Sung Chih Huang, Kun-Hsien Lin, Che-Hao Chuang
-
Publication number: 20250048704Abstract: A semiconductor device includes a semiconductor substrate, a plurality of metal portions, a plurality of nanosheet structures, and a plurality of isolation structures. The metal portions are disposed on the semiconductor substrate and are spaced apart from each other. The nanosheet structures are surrounded by the metal portions such that the nanosheet structures are spaced apart from each other. The isolation structures are disposed on the semiconductor substrate such that two adjacent ones of the metal portions are isolated from each other by a corresponding one of the isolation structures. Each of the isolation structures includes a first dielectric layer and an air gap surrounded by the first dielectric layer.Type: ApplicationFiled: August 1, 2023Publication date: February 6, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hong-Chih CHEN, Fu-Hsiang SU, Shih-Hsun CHANG, Chia-Hao KUO, Chih-Ting YEH
-
Publication number: 20240421146Abstract: A bipolar junction transistor is provided, including a semiconductor substrate and a doped layer of a first conductivity type, a doped well region of a second conductivity type formed in the doped layer, a first, second heavily doped region of the second conductivity type, and a third, fourth and fifth heavily doped region of the first conductivity type in the doped well region. The fifth heavily doped region is coupled with a first pin. The third and fourth heavily doped regions are coupled with a second pin. A sixth and seventh heavily doped region of the first conductivity type are disposed in the doped layer. The sixth and first heavily doped regions are connected in common. The seventh and second heavily doped regions are connected in common. When applying either a positive or negative surged mode, the bipolar junction transistor is formed, having both lateral and vertical conducting paths.Type: ApplicationFiled: June 13, 2023Publication date: December 19, 2024Applicant: AMAZING MICROELECTRONIC CORP.Inventors: Sung-Chih HUANG, Chih-Ting YEH, Che-Hao CHUANG
-
Publication number: 20240186315Abstract: A transient voltage suppressor with adjustable trigger and holding voltages is provided, including a heavily doped substrate of a first conductivity type connected to a first node, a lightly doped epitaxial layer of a second conductivity type on the substrate, a first and third well region of the first conductivity type, a second well region of the second conductivity type, a first and third heavily doped region of the second conductivity type and a second heavily doped region of the first conductivity type. The heavily doped regions are commonly electrically connected to a second node, and individually disposed in the well regions. Trenches are disposed opposite in the substrate for electrical isolation. A floating base bipolar junction transistor and silicon controlled rectifier can be respectively formed under a positive and negative surged mode. Accordingly, the invention is advantageous of superior electrical performances, high layout flexibility and low area consumption.Type: ApplicationFiled: December 5, 2022Publication date: June 6, 2024Applicant: AMAZING MICROELECTRONIC CORP.Inventors: Sung-Chih HUANG, Chih-Ting YEH, Che-Hao CHUANG
-
Publication number: 20230369146Abstract: A test structure and methods of forming the same are described. In some embodiments, the structure includes a first portion having a first thickness, and the first portion comprises one or more dielectric layers. The test structure further includes a second portion disposed adjacent the first portion, the second portion has a second thickness substantially less than the first thickness, and the second portion includes the one or more dielectric layers and a first plurality of test conductive features disposed in the one or more dielectric layers. The test structure further includes a third portion disposed adjacent the second portion, the third portion has a third thickness substantially less than the second thickness, and the third portion comprises the one or more dielectric layers and a second plurality of test conductive features disposed in the one or more dielectric layers.Type: ApplicationFiled: May 16, 2022Publication date: November 16, 2023Inventors: Yen-Ning CHEN, CHIH TING YEH, Wen Han HUNG, Mao-Chia WANG
-
Publication number: 20230168298Abstract: A diode test module and method applicable to the diode test module are provided. A substrate having first conductivity type and an epitaxial layer having second conductivity type on the substrate are formed. A well region having first conductivity type is formed in the epitaxial layer. A first and second heavily doped region having second conductivity type are theoretically formed in the well and connected to a first and second I/O terminal, respectively. Isolation trench is formed there in between for electrical isolation. A monitor cell comprising a third and fourth heavily doped region is provided in a current conduction path between the first and second I/O terminal when inputting an operation voltage. By employing the monitor cell, the invention achieves to determine if the well region is missing by measuring whether a leakage current is generated without additional testing equipment and time for conventional capacitance measurements.Type: ApplicationFiled: November 29, 2021Publication date: June 1, 2023Inventors: CHIH-TING YEH, SUNG CHIH HUANG, KUN-HSIEN LIN, CHE-HAO CHUANG
-
Patent number: 11508853Abstract: A vertical bipolar transistor device includes a heavily-doped semiconductor substrate, a first semiconductor epitaxial layer, at least one doped well, an isolation structure, and an external conductor. The heavily-doped semiconductor substrate and the doped well have a first conductivity type, and the first semiconductor epitaxial layer has a second conductivity type. The first semiconductor epitaxial layer is formed on the heavily-doped semiconductor substrate. The doped well is formed in the first semiconductor epitaxial layer. The isolation structure, formed in the heavily-doped semiconductor substrate and the first semiconductor epitaxial layer, surrounds the first semiconductor epitaxial layer and the at least one doped well. The external conductor is arranged outside the first semiconductor epitaxial layer and the doped well and electrically connected to the first semiconductor epitaxial layer and the doped well.Type: GrantFiled: July 28, 2020Date of Patent: November 22, 2022Assignee: Amazing Microelectronic Corp.Inventors: Chih-Ting Yeh, Sung-Chih Huang, Che-Hao Chuang
-
Patent number: 11509133Abstract: A transient voltage suppression device includes at least one diode string, a power clamp device, at least one first bypass diode, and at least two second bypass diodes. The diode string is coupled between a power terminal and a common bus and coupled to an input output (I/O) port. The power clamp device is coupled between the power terminal and the common bus. The first bypass diode is coupled between the common bus and a ground terminal. The second bypass diodes are coupled in series, coupled between the common bus and the ground terminal, and coupled to the first bypass diode in reverse parallel. Alternatively, the first bypass diode and the second bypass diodes are replaced with at least one bi-directional electrostatic discharge (ESD) device.Type: GrantFiled: December 23, 2020Date of Patent: November 22, 2022Assignee: AMAZING MICROELECTRONIC CORP.Inventors: Chih-Ting Yeh, Sung-Chih Huang, Che-Hao Chuang
-
Patent number: 11476243Abstract: A floating base silicon controlled rectifier is provided, which at least comprises a first conductivity type layer; a second conductivity type well formed in the first conductivity type layer; a first conductivity type heavily doped region coupled to a first node and formed in the second conductivity type well; and a second conductivity type heavily doped region coupled to a second node and formed in the first conductivity type layer. The first conductivity type and the second conductivity type are opposite. When the first conductivity type is N type, the second conductivity type is P type. Alternatively, when the first conductivity type is P type, the second conductivity type is N type. By employing the proposed present invention, the floating base silicon controlled rectifier acts as a forward diode, and an input capacitance can be greatly reduced.Type: GrantFiled: June 1, 2021Date of Patent: October 18, 2022Assignee: AMAZING MICROELECTRONIC CORP.Inventors: Chih-Ting Yeh, Che-Hao Chuang
-
Publication number: 20220200272Abstract: A transient voltage suppression device includes at least one diode string, a power clamp device, at least one first bypass diode, and at least two second bypass diodes. The diode string is coupled between a power terminal and a common bus and coupled to an input output (I/O) port. The power clamp device is coupled between the power terminal and the common bus. The first bypass diode is coupled between the common bus and a ground terminal The second bypass diodes are coupled in series, coupled between the common bus and the ground terminal, and coupled to the first bypass diode in reverse parallel. Alternatively, the first bypass diode and the second bypass diodes are replaced with at least one bi-directional electrostatic discharge (ESD) device.Type: ApplicationFiled: December 23, 2020Publication date: June 23, 2022Applicant: AMAZING MICROELECTRONIC CORP.Inventors: Chih-Ting YEH, Sung-Chih HUANG, Che-Hao CHUANG
-
Patent number: 11271099Abstract: A vertical bipolar transistor device is disclosed. The vertical bipolar transistor device includes a heavily-doped semiconductor substrate, a first semiconductor epitaxial layer, at least one first doped well, and an external conductor. The heavily-doped semiconductor substrate and the first doped well have a first conductivity type. The first semiconductor epitaxial layer has a second conductivity type. The first semiconductor epitaxial layer is formed on the heavily-doped semiconductor substrate. The first doped well is formed in the first semiconductor epitaxial layer. The external conductor is arranged outside the heavily-doped semiconductor substrate and the first semiconductor epitaxial layer and electrically connected to the heavily-doped semiconductor substrate and the first semiconductor epitaxial layer.Type: GrantFiled: July 28, 2020Date of Patent: March 8, 2022Assignee: Amazing Microelectronic Corp.Inventors: Chih-Ting Yeh, Sung-Chih Huang, Che-Hao Chuang
-
Publication number: 20220037512Abstract: A vertical bipolar transistor device is disclosed. The vertical bipolar transistor device includes a heavily-doped semiconductor substrate, a first semiconductor epitaxial layer, at least one first doped well, and an external conductor. The heavily-doped semiconductor substrate and the first doped well have a first conductivity type. The first semiconductor epitaxial layer has a second conductivity type. The first semiconductor epitaxial layer is formed on the heavily-doped semiconductor substrate. The first doped well is formed in the first semiconductor epitaxial layer. The external conductor is arranged outside the heavily-doped semiconductor substrate and the first semiconductor epitaxial layer and electrically connected to the heavily-doped semiconductor substrate and the first semiconductor epitaxial layer.Type: ApplicationFiled: July 28, 2020Publication date: February 3, 2022Inventors: CHIH-TING YEH, SUNG-CHIH HUANG, CHE-HAO CHUANG
-
Publication number: 20220037537Abstract: A vertical bipolar transistor device includes a heavily-doped semiconductor substrate, a first semiconductor epitaxial layer, at least one doped well, an isolation structure, and an external conductor. The heavily-doped semiconductor substrate and the doped well have a first conductivity type, and the first semiconductor epitaxial layer has a second conductivity type. The first semiconductor epitaxial layer is formed on the heavily-doped semiconductor substrate. The doped well is formed in the first semiconductor epitaxial layer. The isolation structure, formed in the heavily-doped semiconductor substrate and the first semiconductor epitaxial layer, surrounds the first semiconductor epitaxial layer and the at least one doped well. The external conductor is arranged outside the first semiconductor epitaxial layer and the doped well and electrically connected to the first semiconductor epitaxial layer and the doped well.Type: ApplicationFiled: July 28, 2020Publication date: February 3, 2022Inventors: CHIH-TING YEH, SUNG-CHIH HUANG, CHE-HAO CHUANG
-
Publication number: 20210288044Abstract: A floating base silicon controlled rectifier is provided, which at least comprises a first conductivity type layer; a second conductivity type well formed in the first conductivity type layer; a first conductivity type heavily doped region coupled to a first node and formed in the second conductivity type well; and a second conductivity type heavily doped region coupled to a second node and formed in the first conductivity type layer. The first conductivity type and the second conductivity type are opposite. When the first conductivity type is N type, the second conductivity type is P type. Alternatively, when the first conductivity type is P type, the second conductivity type is N type. By employing the proposed present invention, the floating base silicon controlled rectifier acts as a forward diode, and an input capacitance can be greatly reduced.Type: ApplicationFiled: June 1, 2021Publication date: September 16, 2021Inventors: Chih-Ting YEH, Che-Hao CHUANG
-
Patent number: 11056481Abstract: A floating base silicon controlled rectifier is provided, which at least comprises a first conductivity type layer; a second conductivity type well formed in the first conductivity type layer; a first conductivity type heavily doped region coupled to a first node and formed in the second conductivity type well; and a second conductivity type heavily doped region coupled to a second node and formed in the first conductivity type layer. The first conductivity type and the second conductivity type are opposite. When the first conductivity type is N type, the second conductivity type is P type. Alternatively, when the first conductivity type is P type, the second conductivity type is N type. By employing the proposed present invention, the floating base silicon controlled rectifier acts as a forward diode, and an input capacitance can be greatly reduced.Type: GrantFiled: August 13, 2018Date of Patent: July 6, 2021Assignee: AMAZING MICROELECTRONIC CORP.Inventors: Chih-Ting Yeh, Che-Hao Chuang
-
Patent number: 10903204Abstract: A lateral transient voltage suppressor device is provided, comprising a doped substrate, a lateral clamping structure disposed on the doped substrate, a buried doped layer disposed between the doped substrate and the lateral clamping structure for isolation, at least one diode module, and at least one trench arranged in the doped substrate, having a depth not less than that of the buried doped layer, and being disposed between the lateral clamping structure and the at least one diode module for electrical isolation. The doped substrate and the buried doped layer have opposite conductivity types such that the doped substrate is electrically floating. The buried doped layer can be further disposed to separate the diode module from the doped substrate. By employing the proposed invention, the lateral transient voltage suppressor device is advantageous of maintaining both a lower clamping voltage as well as a reduced dynamic resistance.Type: GrantFiled: July 24, 2018Date of Patent: January 26, 2021Assignee: AMAZING MICROELECTRONIC CORP.Inventors: Che-Hao Chuang, Chih-Ting Yeh, Kun-Hsien Lin
-
Publication number: 20200051971Abstract: A floating base silicon controlled rectifier is provided, which at least comprises a first conductivity type layer; a second conductivity type well formed in the first conductivity type layer; a first conductivity type heavily doped region coupled to a first node and formed in the second conductivity type well; and a second conductivity type heavily doped region coupled to a second node and formed in the first conductivity type layer. The first conductivity type and the second conductivity type are opposite. When the first conductivity type is N type, the second conductivity type is P type. Alternatively, when the first conductivity type is P type, the second conductivity type is N type. By employing the proposed present invention, the floating base silicon controlled rectifier acts as a forward diode, and an input capacitance can be greatly reduced.Type: ApplicationFiled: August 13, 2018Publication date: February 13, 2020Inventors: Chih-Ting YEH, Che-Hao CHUANG
-
Publication number: 20200035665Abstract: A lateral transient voltage suppressor device is provided, comprising a doped substrate, a lateral clamping structure disposed on the doped substrate, a buried doped layer disposed between the doped substrate and the lateral clamping structure for isolation, at least one diode module, and at least one trench arranged in the doped substrate, having a depth not less than that of the buried doped layer, and being disposed between the lateral clamping structure and the at least one diode module for electrical isolation. The doped substrate and the buried doped layer have opposite conductivity types such that the doped substrate is electrically floating. The buried doped layer can be further disposed to separate the diode module from the doped substrate. By employing the proposed invention, the lateral transient voltage suppressor device is advantageous of maintaining both a lower clamping voltage as well as a reduced dynamic resistance.Type: ApplicationFiled: July 24, 2018Publication date: January 30, 2020Inventors: Che-Hao CHUANG, Chih-Ting YEH, Kun-Hsien LIN
-
Patent number: 10374418Abstract: A circuit and a method for electrostatic discharge clamping are provided. The circuit includes a detection module, a control module, and a clamping module. The detection, control, and clamping modules are coupled with a first power line of a first power source and a second power line of the first power source. Third terminals of the detection, control and clamping modules are coupled to a first power line of a second power source, a voltage division terminal of the detection module, a fourth terminal of the control module respectively. According to an electrostatic discharge event on the first power line of the first power source, the division voltage terminal of the detection module provides a voltage to the control module. Then, the control module controls the clamping module to couple the first power line of the first power source to the second power line of the first power source.Type: GrantFiled: December 8, 2014Date of Patent: August 6, 2019Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Chih-Ting Yeh, Yung-Chih Liang
-
Patent number: 10355144Abstract: A heat-dissipating Zener diode includes a heavily-doped semiconductor substrate having a first conductivity type, a first epitaxial layer having the first conductivity type, a first heavily-doped area having a second conductivity type, a second epitaxial layer, and a second heavily-doped area having the second conductivity type or the first conductivity type. The first epitaxial layer is formed on the heavily-doped semiconductor substrate. The first heavily-doped area is formed in the first epitaxial layer and spaced from the heavily-doped semiconductor substrate. The second epitaxial layer is formed on the first epitaxial layer and penetrated with a first doped area, and the first doped area has the second conductivity type and contacts the first heavily-doped area. The second heavily-doped area is formed in the first doped area.Type: GrantFiled: July 23, 2018Date of Patent: July 16, 2019Assignee: Amazing Microelectronic Corp.Inventors: Chih-Ting Yeh, Sung-Chih Huang, Che-Hao Chuang