Patents by Inventor Chih-Wei Tsai

Chih-Wei Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153896
    Abstract: A first protective layer is formed on a first die and a second die, and openings are formed within the first protective layer. The first die and the second die are encapsulated such that the encapsulant is thicker than the first die and the second die, and vias are formed within the openings. A redistribution layer can also be formed to extend over the encapsulant, and the first die may be separated from the second die.
    Type: Application
    Filed: January 12, 2024
    Publication date: May 9, 2024
    Inventors: Hui-Min Huang, Chih-Wei Lin, Tsai-Tsung Tsai, Ming-Da Cheng, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20240148262
    Abstract: Apparatuses and methods for calculating heart rate are disclosed herein. The apparatus can include a processor configured to calculate heart rate information. The processor includes a heart rate calculator including a memory configured to store a PPG signal and a calculation element coupled to the memory and configured to calculate a heart rate value and generate at least one quality checking factor according to the PPG signal. The processor also includes a checking element configured to determine a validity indicator according to the at least one quality checking factor, a memory control element coupled to the memory and configured to access the memory to transmit the PPG signal, and a multiplexer configured to output the PPG signal accessed by the memory control element or the heart rate value calculated by the calculation element according to the validity indicator.
    Type: Application
    Filed: August 26, 2023
    Publication date: May 9, 2024
    Inventors: Jui-Wei Tsai, Kai-Wei Chiu, Chih-Wei Yeh
  • Patent number: 11978782
    Abstract: The present disclosure relates to a hybrid integrated circuit. In one implementation, an integrated circuit may have a first region with a first gate structure having a ferroelectric gate dielectric, at least one source associated with the first gate of the first region, and at least one drain associated with the first gate structure of the first region. Moreover, the integrated circuit may have a second region with a second gate structure having a high-? gate dielectric, at least one source associated with the second gate structure of the second region, and at least one drain associated with the second gate structure of the second region. The integrated circuit may further have at least one trench isolation between the first region and the second region.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Yi Chuang, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240145403
    Abstract: An electronic package is provided, in which electronic elements and at least one packaging module including a semiconductor chip and a shielding structure covering the semiconductor chip are disposed on a carrier structure, an encapsulation layer encapsulates the electronic elements and the packaging module, and a shielding layer is formed on the encapsulation layer and in contact with the shielding structure. Therefore, the packaging module includes the semiconductor chip and the shielding structure and has a chip function and a shielding wall function simultaneously.
    Type: Application
    Filed: February 6, 2023
    Publication date: May 2, 2024
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chih-Hsien CHIU, Wen-Jung TSAI, Chih-Chiang HE, Ko-Wei CHANG, Chia-Yang CHEN
  • Publication number: 20240145878
    Abstract: An electrode structure of rechargeable battery includes a battery tab stack, an electrode lead, a welding protective layer and a welding seam. The battery tab stack is formed by extension of a plurality of electrode sheets. The electrode lead is joined to one side of the battery tab stack. The welding protective layer is joined to another side of the battery tab stack opposite to the electrode lead. The welding seam extends from the welding protective layer to the electrode lead through the battery tab stack.
    Type: Application
    Filed: November 29, 2022
    Publication date: May 2, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kun-Tso CHEN, Tsung-Ying TSAI, Tsai-Chun LEE, Chih-Wei CHIEN, Hui-Ta CHENG
  • Publication number: 20240133421
    Abstract: An electronic device includes a monitor stand, a hinge mechanism, and an operation element. The hinge mechanism includes a back plate, a speed reduction assembly, and a friction assembly. The back plate is fixed to the monitor stand. The speed reduction assembly includes an input plate and a speed reduction member. The speed reduction member is arranged on the input plate. The friction assembly is arranged between the back plate and the input plate. The operation element is connected to the speed reduction member. A rotation center of the operation element coincides with an axis of the back plate and the speed reduction member are coaxially arranged.
    Type: Application
    Filed: January 17, 2023
    Publication date: April 25, 2024
    Inventors: Chih-Wei KUO, Yu-Chun HUNG, Che-Yen CHOU, Chen-Wei TSAI, Hsiang-Wen HUANG
  • Publication number: 20240136226
    Abstract: An ammonium fluoride gas may be used to form a protection layer for one or more interlayer dielectric layers, one or more insulating caps, and/or one or more source/drain regions of a semiconductor device during a pre-clean etch process. The protection layer can be formed through an oversupply of nitrogen trifluoride during the pre-clean etch process. The oversupply of nitrogen trifluoride causes an increased formation of ammonium fluoride, which coats the interlayer dielectric layer(s), the insulating cap(s), and/or the source/drain region(s) with a thick protection layer. The protection layer protects the interlayer dielectric layer(s), the insulating cap(s), and/or the source/drain region(s) during the pre-clean process from being etched by fluorine ions formed during the pre-clean process.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Li-Wei CHU, Ying-Chi SU, Yu-Kai CHEN, Wei-Yip LOH, Hung-Hsu CHEN, Chih-Wei CHANG, Ming-Hsing TSAI
  • Patent number: 11962060
    Abstract: A power dividing and combining device comprising a resonance body, a plurality of circuit boards, an upper cover and a lower cover is provided. The resonance body comprises a solid conductive body, a plurality of first dividing elements, a plurality of second dividing elements, a signal-receiving end and a signal-transmitting end. The solid conductive body has a first surface, a second surface opposite to the first surface, and a plurality of side surfaces connecting the first surface and the second surface. The first dividing elements are disposed on the first surface and separate a plurality of first resonance channels on the first surface. The first resonance channels intersect at a first common region on the first surface. The second dividing elements are disposed on the second surface and separate a plurality of second resonance channels on the second surface. The second resonance channels intersect at a second common region on the second surface.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: April 16, 2024
    Assignee: AMPAK TECHNOLOGY INC.
    Inventors: Fure-Tzahn Tsai, Ruey Bing Hwang, Tso Hua Lin, Chih Wei Wang, Tzong-Yow Ho
  • Patent number: 11961913
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain feature on a semiconductor fin structure, a first isolation structure surrounding the semiconductor fin structure, source/drain spacers on the first isolation structure and surrounding a lower portion of the source/drain feature, a dielectric fin structure adjoining and in direct contact with the first isolation structure and one of the source/drain spacers, and an interlayer dielectric layer over the source/drain spacers and the dielectric fin structure and surrounding an upper portion of the source/drain feature.
    Type: Grant
    Filed: April 21, 2023
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Chiang, Shi-Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11961897
    Abstract: A first fin structure is disposed over a substrate. The first fin structure contains a semiconductor material. A gate dielectric layer is disposed over upper and side surfaces of the first fin structure. A gate electrode layer is formed over the gate dielectric layer. A second fin structure is disposed over the substrate. The second fin structure is physically separated from the first fin structure and contains a ferroelectric material. The second fin structure is electrically coupled to the gate electrode layer.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hsing Hsu, Sai-Hooi Yeong, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: 11948970
    Abstract: A semiconductor device includes a semiconductor fin, a gate structure, and a dielectric isolation plug. The semiconductor fin extends along a first direction above a substrate and includes a silicon germanium layer and a silicon layer over the silicon germanium layer. The gate structure extends across the semiconductor fin along a second direction perpendicular to the first direction. The dielectric isolation plug extends downwardly from a top surface of the silicon layer into the silicon germanium layer when viewed in a cross section taken along the first direction.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11947252
    Abstract: An optical member driving mechanism is provided. The optical member driving mechanism includes a first portion and a matrix structure. The first portion is connected to a first optical member and corresponds to a first light. The matrix structure is disposed on the first portion and corresponds to a second light, wherein the first light is different from the second light. The matrix structure includes a regularly-arranged structure.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: April 2, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chih-Wei Weng, Juei-Hung Tsai, Shu-Shan Chen, Mao-Kuo Hsu, Sin-Jhong Song
  • Patent number: 11942548
    Abstract: A multi-gate semiconductor device is formed that provides a first fin element extending from a substrate. A gate structure extends over a channel region of the first fin element. The channel region of the first fin element includes a plurality of channel semiconductor layers each surrounded by a portion of the gate structure. A source/drain region of the first fin element is adjacent the gate structure. The source/drain region includes a first semiconductor layer, a dielectric layer over the first semiconductor layer, and a second semiconductor layer over the dielectric layer.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ching-Wei Tsai, Carlos H. Diaz, Chih-Hao Wang, Wai-Yi Lien, Ying-Keung Leung
  • Publication number: 20240096781
    Abstract: A package structure including a semiconductor die, a redistribution circuit structure and an electronic device is provided. The semiconductor die is laterally encapsulated by an insulating encapsulation. The redistribution circuit structure is disposed on the semiconductor die and the insulating encapsulation. The redistribution circuit structure includes a colored dielectric layer, inter-dielectric layers and redistribution conductive layers embedded in the inter-dielectric layers. The electronic device is disposed over the colored dielectric layer and electrically connected to the redistribution circuit structure.
    Type: Application
    Filed: March 20, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Ti Lu, Hao-Yi Tsai, Chia-Hung Liu, Yu-Hsiang Hu, Hsiu-Jen Lin, Tzuan-Horng Liu, Chih-Hao Chang, Bo-Jiun Lin, Shih-Wei Chen, Hung-Chun Cho, Pei-Rong Ni, Hsin-Wei Huang, Zheng-Gang Tsai, Tai-You Liu, Po-Chang Shih, Yu-Ting Huang
  • Publication number: 20240096756
    Abstract: A method of making a semiconductor device includes manufacturing a first transistor over a first side of a substrate. The method further includes depositing a spacer material against a sidewall of the first transistor. The method further includes recessing the spacer material to expose a first portion of the sidewall of the first transistor. The method further includes manufacturing a first electrical connection to the transistor, a first portion of the electrical connection contacts a surface of the first transistor farthest from the substrate, and a second portion of the electrical connect contacts the first portion of the sidewall of the first transistor. The method further includes manufacturing a self-aligned interconnect structure (SIS) extending along the spacer material, wherein the spacer material separates a portion of the SIS from the first transistor, and the first electrical connection directly contacts the SIS.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: Chih-Yu LAI, Chih-Liang CHEN, Chi-Yu LU, Shang-Syuan CIOU, Hui-Zhong ZHUANG, Ching-Wei TSAI, Shang-Wen CHANG
  • Publication number: 20240096701
    Abstract: A device includes: a stack of semiconductor nanostructures; a gate structure wrapping around the semiconductor nanostructures, the gate structure extending in a first direction; a source/drain region abutting the gate structure and the stack in a second direction transverse the first direction; a contact structure on the source/drain region; a backside conductive trace under the stack, the backside conductive trace extending in the second direction; a first through via that extends vertically from the contact structure to a top surface of the backside dielectric layer; and a gate isolation structure that abuts the first through via in the second direction.
    Type: Application
    Filed: May 17, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Ching-Wei TSAI, Shang-Wen CHANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Patent number: 11935804
    Abstract: In an embodiment, a device includes: an integrated circuit die; an encapsulant at least partially surrounding the integrated circuit die, the encapsulant including fillers having an average diameter; a through via extending through the encapsulant, the through via having a lower portion of a constant width and an upper portion of a continuously decreasing width, a thickness of the upper portion being greater than the average diameter of the fillers; and a redistribution structure including: a dielectric layer on the through via, the encapsulant, and the integrated circuit die; and a metallization pattern having a via portion extending through the dielectric layer and a line portion extending along the dielectric layer, the metallization pattern being electrically coupled to the through via and the integrated circuit die.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Sung Huang, Ming Hung Tseng, Yen-Liang Lin, Hao-Yi Tsai, Chi-Ming Tsai, Chung-Shi Liu, Chih-Wei Lin, Ming-Che Ho
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240084455
    Abstract: Some implementations described herein include systems and techniques for fabricating a wafer-on-wafer product using a filled lateral gap between beveled regions of wafers included in a stacked-wafer assembly and along a perimeter region of the stacked-wafer assembly. The systems and techniques include a deposition tool having an electrode with a protrusion that enhances an electromagnetic field along the perimeter region of the stacked-wafer assembly during a deposition operation performed by the deposition tool. Relative to an electromagnetic field generated by a deposition tool not including the electrode with the protrusion, the enhanced electromagnetic field improves the deposition operation so that a supporting fill material may be sufficiently deposited.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 14, 2024
    Inventors: Che Wei YANG, Chih Cheng SHIH, Kuo Liang LU, Yu JIANG, Sheng-Chan LI, Kuo-Ming WU, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Patent number: 11930174
    Abstract: A method and apparatus for block partition are disclosed. If a cross-colour component prediction mode is allowed, the luma block and the chroma block are partitioned into one or more luma leaf blocks and chroma leaf blocks. If a cross-colour component prediction mode is allowed, whether to enable an LM (Linear Model) mode for a target chroma leaf block is determined based on a first split type applied to an ancestor chroma node of the target chroma leaf block and a second split type applied to a corresponding ancestor luma node. According to another method, after the luma block and the chroma block are partitioned using different partition tress, determine whether one or more exception conditions to allow an LM for a target chroma leaf block are satisfied when the chroma partition tree uses a different split type, a different partition direction, or both from the luma partition tree.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: March 12, 2024
    Assignee: HFI INNOVATION INC.
    Inventors: Chia-Ming Tsai, Tzu-Der Chuang, Chih-Wei Hsu, Ching-Yeh Chen, Zhi-Yi Lin