Patents by Inventor Chih-Wei Yao

Chih-Wei Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942364
    Abstract: In some embodiments, the present disclosure relates to a method of forming an interconnect. The method includes forming an etch stop layer (ESL) over a lower conductive structure and forming one or more dielectric layers over the ESL. A first patterning process is performed on the one or more dielectric layers to form interconnect opening and a second patterning process is performed on the one or more dielectric layers to increase a depth of the interconnect opening and expose an upper surface of the ESL. A protective layer is selectively formed on sidewalls of the one or more dielectric layers forming the interconnect opening. A third patterning process is performed to remove portions of the ESL that are uncovered by the one or more dielectric layers and the protective layer and to expose the lower conductive structure. A conductive material is formed within the interconnect opening.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Wen Tien, Chung-Ju Lee, Chih Wei Lu, Hsin-Chieh Yao, Yu-Teng Dai, Wei-Hao Liao
  • Publication number: 20240088022
    Abstract: Some embodiments relate to an integrated chip including a plurality of conductive structures over a substrate. A first dielectric layer is disposed laterally between the conductive structures. A spacer structure is disposed between the first dielectric layer and the plurality of conductive structures. An etch stop layer overlies the plurality of conductive structures. The etch stop layer is disposed on upper surfaces of the spacer structure and the first dielectric layer.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Yu-Teng Dai, Chung-Ju Lee, Chih Wei Lu, Hsin-Chieh Yao, Hsi-Wen Tien, Wei-Hao Liao
  • Patent number: 11923293
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first interconnect dielectric layer arranged over a substrate. An interconnect wire extends through the first interconnect dielectric layer, and a barrier structure is arranged directly over the interconnect wire. The integrated chip further includes an etch stop layer arranged over the barrier structure and surrounds outer sidewalls of the barrier structure. A second interconnect dielectric layer is arranged over the etch stop layer, and an interconnect via extends through the second interconnect dielectric layer, the etch stop layer, and the barrier structure to contact the interconnect wire.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Chieh Yao, Chung-Ju Lee, Chih Wei Lu, Hsi-Wen Tien, Wei-Hao Liao, Yu-Teng Dai
  • Patent number: 11431344
    Abstract: An apparatus and method are provided. The apparatus includes a phase locked loop (PLL) configured to generate a reference signal; a sub-sampling PLL (SS-PLL) connected to the PLL and configured to sub-sample the reference signal; and a first pre-charge circuit connected to a sampling device of the SS-PLL and configured to facilitate frequency locking of the SS-PLL.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: August 30, 2022
    Inventors: Yongrong Zuo, Chih-Wei Yao, Wanghua Wu
  • Patent number: 11233627
    Abstract: An apparatus for providing fast-settling quadrature detection and correction includes: a quadrature correction circuit that receives four quadrature clock signals; a quadrature detector that selects two clock signals among the four quadrature clock signals; and a phase digitizer that generates a digital code indicating a phase difference between the two clock signals. The quadrature correction circuit adjusts a phase between the two clock signals using the digital code.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: January 25, 2022
    Inventors: Zhiqiang Huang, Hiep Pham, Chih-Wei Yao
  • Patent number: 11175633
    Abstract: A system and method for fast converging gain calibration for phase lock loops (PLL) are herein disclosed. According to one embodiment, a method includes receiving, with a voltage generation circuit, an input value representing a difference between a sampled voltage and a reference voltage, and adjusting, with the voltage generation circuit, the reference voltage by generating a voltage output based on the difference represented by the input value.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: November 16, 2021
    Inventors: Chih-Wei Yao, Ronghua Ni
  • Publication number: 20210313995
    Abstract: An apparatus and method are provided. The apparatus includes a phase locked loop (PLL) configured to generate a reference signal; a sub-sampling PLL (SS-PLL) connected to the PLL and configured to sub-sample the reference signal; and a first pre-charge circuit connected to a sampling device of the SS-PLL and configured to facilitate frequency locking of the SS-PLL.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 7, 2021
    Inventors: Yongrong ZUO, Chih-Wei Yao, Wanghua Wu
  • Patent number: 11115005
    Abstract: A ring voltage controlled oscillator (VCO) circuit is herein provided. According to one embodiment, a ring VCO circuit includes a plurality of stages connected in series, wherein each stage includes a first inverter, a second inverter, a third inverter and a fourth inverter, the first inverter connected in parallel with the third and fourth inverters and the second inverter connected in parallel with the third and fourth inverters, and a first biasing resistor connected to a first node and coupled to an input of the first inverter. The first biasing resistor includes a first switch configured to set the first biasing resistor to about zero voltage.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: September 7, 2021
    Inventors: Xiong Liu, Chih-Wei Yao
  • Patent number: 11063599
    Abstract: An apparatus and method are provided. The apparatus includes a phase locked loop (PLL) configured to generate a reference signal; a sub-sampling PLL (SS-PLL) connected to the PLL and configured to sub-sample the reference signal; and a first pre-charge circuit connected to the SS-PLL and configured to allow an output voltage of the SS-PLL to transition to an operating voltage to indicate that a difference between two voltage inputs is zero on average.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: July 13, 2021
    Inventors: Yongrong Zuo, Chih-Wei Yao, Wanghua Wu
  • Patent number: 11050428
    Abstract: A synchronized I/Q detection circuit is provided. A first subset of input signals and, subsequently, a second subset of input signals are provided by a first multiplexer and received by a first phase detector. Outputs of the first phase detector are receiving, by a first reset and sampling circuit. A second set of input signals are provided by a second multiplexer and received by a second phase detector, from a second multiplexer, while the first multiplexer receives the first and second subsets of input signals. The first subset of input signals has a same phase order as the second set of input signals, and the second subset of input signals has a different phase order than the second set of input signals. Outputs of the second phase detector are received by a second reset and sampling circuit. A comparator outputs a detected phase difference based on the outputs of the first and second reset and sampling circuits.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: June 29, 2021
    Inventors: Zhiqiang Huang, Chih-Wei Yao, Hiep Pham
  • Patent number: 10996634
    Abstract: A system and method for fast converging gain calibration for phase lock loops (PLL) are herein disclosed. According to one embodiment, a method includes receiving, with a voltage generation circuit, an input value representing a difference between a sampled voltage and a reference voltage, and adjusting, with the voltage generation circuit, the reference voltage by generating a voltage output based on the difference represented by the input value.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 4, 2021
    Inventors: Chih-Wei Yao, Ronghua Ni
  • Patent number: 10965297
    Abstract: Methods and apparatuses are provided for fractional-N frequency synthesis using a phase-locked loop (PLL). A phase detector (PD) of the PLL determines a phase difference between a clock and a feedback clock (CLKFB). A low-pass loop filter of the PLL detects a control voltage based on the phase difference. A voltage-controlled oscillator (VCO) of the PLL generates a periodic signal based on the control voltage. A sigma-delta modulator (SDM) of the PLL generates a division sequence ratio and a selection control signal based on a frequency command word. A multi-modulus divider (MMDIV) generates a first CLKFB and a second CLKFB based on the division sequence ratio and differential inputs of the periodic signal. The MMDIV outputs one of the first CLKFB and the second CLKFB as the CLKFB to the PD based on the selection control signal.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: March 30, 2021
    Inventors: Wanghua Wu, Chih-Wei Yao
  • Publication number: 20210067166
    Abstract: A system, method and electronic device are provided. The system includes a shared fractional-N phase-lock loop (PLL), a ring oscillator circuit (OSC), and a multiphase injection pulse generator configured to receive an input signal having a first frequency from the shared fraction-N PLL and generate injection pulses for the OSC based on the input signal.
    Type: Application
    Filed: April 3, 2020
    Publication date: March 4, 2021
    Inventors: Xiong LIU, Chih-Wei YAO
  • Publication number: 20210067145
    Abstract: A ring voltage controlled oscillator (VCO) circuit is herein provided. According to one embodiment, a ring VCO circuit includes a plurality of stages connected in series, wherein each stage includes a first inverter, a second inverter, a third inverter and a fourth inverter, the first inverter connected in parallel with the third and fourth inverters and the second inverter connected in parallel with the third and fourth inverters, and a first biasing resistor connected to a first node and coupled to an input of the first inverter.
    Type: Application
    Filed: March 31, 2020
    Publication date: March 4, 2021
    Inventors: Xiong LIU, Chih-Wei YAO
  • Patent number: 10917078
    Abstract: A system and method for fast converging reference clock duty cycle correction for a digital to time converter (DTC) based analog fractional-N phase-locked loop (PLL) are herein disclosed. According to one embodiment, an electronic circuit includes a clock doubler, a comparator that outputs a value representing a difference between a voltage at a voltage-to-current (Gm) circuit and a reference voltage that is adjusted to compensate for an offset of the comparator, and a duty cycle calibration circuit that receives the value output from the comparator and adjusts a duty cycle of the PLL by extracting an error from the value output from the comparator and delaying a clock edge of the duty cycle according to the extracted error.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: February 9, 2021
    Inventors: Wanghua Wu, Chih-Wei Yao
  • Publication number: 20210028919
    Abstract: An apparatus for providing fast-settling quadrature detection and correction includes: a quadrature correction circuit that receives four quadrature clock signals; a quadrature detector that selects two clock signals among the four quadrature clock signals; and a phase digitizer that generates a digital code indicating a phase difference between the two clock signals. The quadrature correction circuit adjusts a phase between the two clock signals using the digital code.
    Type: Application
    Filed: October 14, 2020
    Publication date: January 28, 2021
    Inventors: Zhiqiang Huang, Hiep Pham, Chih-Wei Yao
  • Publication number: 20200403621
    Abstract: A synchronized I/Q detection circuit is provided. A first subset of input signals and, subsequently, a second subset of input signals are provided by a first multiplexer and received by a first phase detector. Outputs of the first phase detector are receiving, by a first reset and sampling circuit. A second set of input signals are provided by a second multiplexer and received by a second phase detector, from a second multiplexer, while the first multiplexer receives the first and second subsets of input signals. The first subset of input signals has a same phase order as the second set of input signals, and the second subset of input signals has a different phase order than the second set of input signals. Outputs of the second phase detector are received by a second reset and sampling circuit. A comparator outputs a detected phase difference based on the outputs of the first and second reset and sampling circuits.
    Type: Application
    Filed: September 2, 2020
    Publication date: December 24, 2020
    Inventors: Zhiqiang HUANG, Chih-Wei YAO, Hiep PHAM
  • Patent number: 10841072
    Abstract: An apparatus for providing fast-settling quadrature detection and correction includes: a quadrature correction circuit that receives four quadrature clock signals; a quadrature detector that selects two clock signals among the four quadrature clock signals; and a phase digitizer that generates a digital code indicating a phase difference between the two clock signals. The quadrature correction circuit adjusts a phase between the two clock signals using the digital code.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: November 17, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Zhiqiang Huang, Hiep Pham, Chih-Wei Yao
  • Publication number: 20200348626
    Abstract: A system and method for fast converging gain calibration for phase lock loops (PLL) are herein disclosed. According to one embodiment, a method includes receiving, with a voltage generation circuit, an input value representing a difference between a sampled voltage and a reference voltage, and adjusting, with the voltage generation circuit, the reference voltage by generating a voltage output based on the difference represented by the input value.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Chih-Wei YAO, Ronghua NI
  • Publication number: 20200343898
    Abstract: An apparatus and method are provided. The apparatus includes a phase locked loop (PLL) configured to generate a reference signal; a sub-sampling PLL (SS-PLL) connected to the PLL and configured to sub-sample the reference signal; and a first pre-charge circuit connected to the SS-PLL and configured to allow an output voltage of the SS-PLL to transition to an operating voltage to indicate that a difference between two voltage inputs is zero on average.
    Type: Application
    Filed: July 19, 2019
    Publication date: October 29, 2020
    Inventors: Yongrong ZUO, Chih-Wei Yao, Wanghua Wu