Patents by Inventor Chii-Ming Wu

Chii-Ming Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250105137
    Abstract: Various embodiments of the present application are directed towards an integrated chip structure. The integrated chip structure includes a bottom electrode over a substrate, a top electrode over the bottom electrode, and a capacitor insulator structure between the bottom electrode and the top electrode. The capacitor insulator structure includes a first dielectric layer, a second dielectric layer over the first dielectric layer, and a third dielectric layer over the second dielectric layer. The first dielectric layer includes a first dielectric material. The second dielectric layer includes a second dielectric material that is different than the first dielectric material. The second dielectric material is an amorphous solid. The third dielectric layer includes the first dielectric material.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventors: Hsing-Lien Lin, Cheng-Te Lee, Rei-Lin Chu, Chii-Ming Wu, Yeur-Luen Tu, Chung-Yi Yu
  • Patent number: 12261197
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. The method includes forming a bottom electrode over a substrate. A dielectric layer is formed on the bottom electrode. A first top electrode layer is deposited on the dielectric layer by a first deposition process. A diffusion barrier layer is deposited on the first top electrode layer by a second deposition process different from the first deposition process. A second top electrode layer is deposited on the diffusion barrier layer by a third deposition. The third deposition process is the same as the first deposition process.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: March 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Hai-Dang Trinh, Fa-Shen Jiang
  • Patent number: 12249586
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes an interconnect structure disposed over a substrate. The interconnect structure includes a plurality of interconnect layers disposed within a dielectric structure. A bond pad structure is disposed over the interconnect structure. The bond pad structure includes a contact layer. A first masking layer including a metal-oxide is disposed over the bond pad structure. The first masking layer has interior sidewalls arranged directly over the bond pad structure to define an opening. A conductive bump is arranged within the opening and on the contact layer.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: March 11, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Julie Yang, Chii Ming Wu, Tzu-Chung Tsai, Yao-Wen Chang
  • Publication number: 20250081864
    Abstract: A semiconductor device includes a diffusion barrier structure, a bottom electrode, a top electrode, a switching layer and a capping layer. The bottom electrode is over the diffusion barrier structure. The top electrode is over the bottom electrode. The switching layer is between the bottom electrode and the top electrode, and configured to store data. The capping layer is between the switching layer and the top electrode. The diffusion barrier structure includes a multiple-layer structure. A thermal conductivity of the diffusion barrier structure is greater than approximately 20 W/mK.
    Type: Application
    Filed: November 18, 2024
    Publication date: March 6, 2025
    Inventors: HAI-DANG TRINH, FA-SHEN JIANG, HSING-LIEN LIN, CHII-MING WU
  • Patent number: 12239035
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a memory device. The method includes forming a bottom electrode over a substrate. A data storage structure is formed on the bottom electrode. The data storage structure comprises a first atomic percentage of a first dopant and a second atomic percentage of a second dopant. The first atomic percentage is different from the second atomic percentage. A top electrode is formed on the data storage structure.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: February 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Tzu-Chung Tsai, Fa-Shen Jiang, Bi-Shen Lee
  • Patent number: 12199029
    Abstract: Various embodiments of the present application are directed towards a metal-insulator-metal (MIM) capacitor. The MIM capacitor comprises a bottom electrode disposed over a semiconductor substrate. A top electrode is disposed over and overlies the bottom electrode. A capacitor insulator structure is disposed between the bottom electrode and the top electrode. The capacitor insulator structure comprises at least three dielectric structures vertically stacked upon each other. A bottom half of the capacitor insulator structure is a mirror image of a top half of the capacitor insulator structure in terms of dielectric materials of the dielectric structures.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: January 14, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Cheng-Te Lee, Rei-Lin Chu, Chii-Ming Wu, Yeur-Luen Tu, Chung-Yi Yu
  • Patent number: 12178147
    Abstract: A semiconductor device includes a diffusion barrier structure, a bottom electrode, a top electrode, a switching layer and a capping layer. The bottom electrode is over the diffusion barrier structure. The top electrode is over the bottom electrode. The switching layer is between the bottom electrode and the top electrode, and configured to store data. The capping layer is between the switching layer and the top electrode. The diffusion barrier structure includes a multiple-layer structure. A thermal conductivity of the diffusion barrier structure is greater than approximately 20 W/mK.
    Type: Grant
    Filed: October 16, 2022
    Date of Patent: December 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hai-Dang Trinh, Fa-Shen Jiang, Hsing-Lien Lin, Chii-Ming Wu
  • Patent number: 12161057
    Abstract: A method for forming a semiconductor memory structure include forming a pillar structure. The pillar structure includes a first conductive layer, a second conductive layer and a data storage material layer between the first and second conducive layers. A sidewall of the first conductive layer, a sidewall of the data storage layer and a sidewall of the second conductive layer are exposed. An oxygen-containing plasma treatment is performed on the pillar structure to form hydrophilic surfaces of the sidewall of the first conductive layer, the sidewall of the data storage layer and the sidewall of the second conductive layer. An encapsulation layer is formed over the pillar structure and the dielectric layer. The encapsulation layer is in contact with the hydrophilic surfaces of the sidewall of the first conductive layer, the sidewall of the data storage layer and the sidewall of the second conductive layer.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: December 3, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsing-Lien Lin, Fu-Ting Sung, Ching Ju Yang, Chii-Ming Wu
  • Publication number: 20240387424
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes an interconnect structure over a substrate. The interconnect structure includes a plurality of interconnects disposed within a dielectric structure. A bond pad structure is over the interconnect structure, a first masking layer is over the bond pad structure, and a second masking layer is over the first masking layer. The second masking layer contacts opposing outermost sidewalls of the bond pad structure and the first masking layer. A conductive bump vertically extends through the first masking layer and the second masking layer to contact the bond pad structure.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 21, 2024
    Inventors: Julie Yang, Chii Ming Wu, Tzu-Chung Tsai, Yao-Wen Chang
  • Publication number: 20240373763
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell including a top-electrode barrier layer configured to block the movement of nitrogen or some other suitable non-metal element from a top electrode of the RRAM cell to an active metal layer of the RRAM cell. Blocking the movement of non-metal element may be prevent formation of an undesired switching layer between the active metal layer and the top electrode. The undesired switching layer would increase parasitic resistance of the RRAM cell, such that top-electrode barrier layer may reduce parasitic resistance by preventing formation of the undesired switching layer.
    Type: Application
    Filed: July 16, 2024
    Publication date: November 7, 2024
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Fa-Shen Jiang
  • Patent number: 12114582
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell including a top-electrode barrier layer configured to block the movement of nitrogen or some other suitable non-metal element from a top electrode of the RRAM cell to an active metal layer of the RRAM cell. Blocking the movement of non-metal element may be prevent formation of an undesired switching layer between the active metal layer and the top electrode. The undesired switching layer would increase parasitic resistance of the RRAM cell, such that top-electrode barrier layer may reduce parasitic resistance by preventing formation of the undesired switching layer.
    Type: Grant
    Filed: June 8, 2023
    Date of Patent: October 8, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Fa-Shen Jiang
  • Patent number: 12102019
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. A first conductive structure overlies a substrate. A second conductive structure overlies the first conductive structure. A data storage structure is disposed between the first and second conductive structures. The data storage structure includes a first dielectric layer, a second dielectric layer, and a third dielectric layer. Respective bandgaps of the first, second, and third dielectric layers are different from one another.
    Type: Grant
    Filed: June 15, 2023
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Patent number: 12100767
    Abstract: A semiconductor includes a gate stack over a substrate. The semiconductor device further includes an interlayer dielectric (ILD) at least partially enclosing the gate stack. The ILD includes a portion doped with a large species material, wherein the portion includes a first sidewall substantially perpendicular to a top-most surface of the ILD, and the portion includes a second sidewall having a positive angle with respect to the first sidewall.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Ta Wu, Chii-Ming Wu, Shiu-Ko Jangjian, Kun-Tzu Lin, Lan-Fang Chang
  • Publication number: 20240224822
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode structure disposed over a lower interconnect within a lower inter-level dielectric (ILD) layer over a substrate. The bottom electrode structure has an upper surface including a noble metal. A diffusion barrier layer is over the bottom electrode structure, a data storage structure is over the diffusion barrier layer, and a top electrode structure is over the data storage structure. The diffusion barrier layer is configured to mitigate a diffusion of noble metal atoms from the bottom electrode structure to the data storage structure.
    Type: Application
    Filed: March 13, 2024
    Publication date: July 4, 2024
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Patent number: 11963468
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over one or more interconnects and a diffusion barrier layer on the bottom electrode. The diffusion barrier layer has an inner upper surface that is arranged laterally between and vertically below an outer upper surface of the diffusion barrier film. The outer upper surface wraps around the inner upper surface in a top-view of the diffusion barrier layer. A data storage structure is separated from the bottom electrode by the diffusion barrier layer. A top electrode is arranged over the data storage structure.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Patent number: 11923235
    Abstract: A method includes forming a first trench and a second trench in a semiconductor substrate; forming a first mask over the semiconductor substrate, wherein the first mask is disposed in a first portion of the first trench and exposes the second trench and a second portion of the first trench; after forming the first mask, deepening the second trench and the second portion of the first trench; after deepening the second trench and the second portion of the first trench, removing the first mask; and after removing the first mask, filling a dielectric material in both the first and second trenches.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Ta Wu, Chii-Ming Wu, Sen-Hong Syue, Cheng-Po Chau
  • Publication number: 20230345847
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. A first conductive structure overlies a substrate. A second conductive structure overlies the first conductive structure. A data storage structure is disposed between the first and second conductive structures. The data storage structure includes a first dielectric layer, a second dielectric layer, and a third dielectric layer. Respective bandgaps of the first, second, and third dielectric layers are different from one another.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 26, 2023
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Publication number: 20230320241
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell including a top-electrode barrier layer configured to block the movement of nitrogen or some other suitable non-metal element from a top electrode of the RRAM cell to an active metal layer of the RRAM cell. Blocking the movement of non-metal element may be prevent formation of an undesired switching layer between the active metal layer and the top electrode. The undesired switching layer would increase parasitic resistance of the RRAM cell, such that top-electrode barrier layer may reduce parasitic resistance by preventing formation of the undesired switching layer.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Fa-Shen Jiang
  • Publication number: 20230255125
    Abstract: A method for forming a semiconductor memory structure include forming a pillar structure. The pillar structure includes a first conductive layer, a second conductive layer and a data storage material layer between the first and second conducive layers. A sidewall of the first conductive layer, a sidewall of the data storage layer and a sidewall of the second conductive layer are exposed. An oxygen-containing plasma treatment is performed on the pillar structure to form hydrophilic surfaces of the sidewall of the first conductive layer, the sidewall of the data storage layer and the sidewall of the second conductive layer. An encapsulation layer is formed over the pillar structure and the dielectric layer. The encapsulation layer is in contact with the hydrophilic surfaces of the sidewall of the first conductive layer, the sidewall of the data storage layer and the sidewall of the second conductive layer.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: HSING-LIEN LIN, FU-TING SUNG, CHING JU YANG, CHII-MING WU
  • Patent number: 11721794
    Abstract: A method for manufacturing reflective structure is provided. The method includes the operations as follows. A metallization structure is received. A plurality of conductive pads are formed over the metallization structure. A plurality of dielectric stacks are formed over the conductive pads, respectively, wherein the thicknesses of the dielectric stacks are different. The dielectric stacks are isolated by forming a plurality of trenches over a plurality of intervals between each two adjacent dielectric stacks.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: August 8, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chia-Hua Lin, Yao-Wen Chang, Chii-Ming Wu, Cheng-Yuan Tsai, Eugene I-Chun Chen, Tzu-Chung Tsai