Patents by Inventor Chin-Chi Wang

Chin-Chi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240114619
    Abstract: An electronic device including an electronic unit and a redistribution layer is disclosed. The electronic unit has connection pads. The redistribution layer is electrically connected to the electronic unit and includes a first insulating layer, a first metal layer and a second insulating layer. The first insulating layer is disposed on the electronic unit and has first openings disposed corresponding to the connection pads. The first metal layer is disposed on the first insulating layer and electrically connected to the electronic unit through the connection pads. The second insulating layer is disposed on the first metal layer. The first insulating layer includes first filler particles, and the second insulating layer includes second filler particles. The first filler particles have a first maximum particle size, the second filler particles have a second maximum particle size, and the second maximum particle size is greater than the first maximum particle size.
    Type: Application
    Filed: December 2, 2022
    Publication date: April 4, 2024
    Applicant: InnoLux Corporation
    Inventors: Cheng-Chi WANG, Chin-Ming HUANG, Chien-Feng LI, Chia-Lin YANG
  • Patent number: 11941298
    Abstract: A host system initiates an abort of a command that has been placed into a submission queue (SQ) of the host system. The host system identifies at least one of a first outcome and a second outcome. When the first outcome indicates that the command is not completed and the second outcome indicates that the SQ entry has been fetched from the SQ, the host system sends an abort request to a storage device, and issues a cleanup request to direct the host controller to reclaim host hardware resources allocated to the command. The host system adds a completion queue (CQ) entry to a CQ and sets an overall command status (OCS) value of the CQ entry based on at least one of the first outcome and the second outcome.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: March 26, 2024
    Assignee: MediaTek Inc.
    Inventors: Chih-Chieh Chou, Chia-Chun Wang, Liang-Yen Wang, Chin Chin Cheng, Szu-Chi Liu
  • Patent number: 10700176
    Abstract: Vertical gate all around (VGAA) devices and methods of manufacture thereof are described. A method for manufacturing a VGAA device includes: exposing a top surface and sidewalls of a first portion of a protrusion extending from a doped region, wherein a second portion of the protrusion is surrounded by a gate stack; and enlarging the first portion of the protrusion using an epitaxial growth process.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: June 30, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hao Chang, Ming-Shan Shieh, Cheng-Long Chen, Chin-Chi Wang, Chi-Wen Liu, Wai-Yi Lien, Chih-Hao Wang
  • Publication number: 20200075742
    Abstract: Vertical gate all around (VGAA) devices and methods of manufacture thereof are described. A method for manufacturing a VGAA device includes: exposing a top surface and sidewalls of a first portion of a protrusion extending from a doped region, wherein a second portion of the protrusion is surrounded by a gate stack; and enlarging the first portion of the protrusion using an epitaxial growth process.
    Type: Application
    Filed: October 24, 2019
    Publication date: March 5, 2020
    Inventors: Chia-Hao Chang, Ming-Shan Shieh, Cheng-Long Chen, Chin-Chi Wang, Chi-Wen Liu, Wai-Yi Lien, Chih-Hao Wang
  • Patent number: 10483367
    Abstract: Vertical gate all around (VGAA) devices and methods of manufacture thereof are described. A method for manufacturing a VGAA device includes: exposing a top surface and sidewalls of a first portion of a protrusion extending from a doped region, wherein a second portion of the protrusion is surrounded by a gate stack; and enlarging the first portion of the protrusion using an epitaxial growth process.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: November 19, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hao Chang, Ming-Shan Shieh, Cheng-Long Chen, Chin-Chi Wang, Chi-Wen Liu, Wai-Yi Lien, Chih-Hao Wang
  • Patent number: 10256151
    Abstract: A method for fabricating a fin field-effect transistor (FinFET) device includes forming a first dielectric layer over a substrate and then etching the first dielectric layer and the substrate to form a first fin and a second fin. A second dielectric layer is formed along sidewalls of the first fin and the second fin. A protection layer is deposited over the first fin and the second fin. A portion of the protection layer and the first dielectric layer on the second fin is removed and the second fin is then recessed to form a trench. A semiconductor material layer is epitaxially grown in the trench. The protection layer is removed to reveal the first fin and the second fin.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: April 9, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Ching-Wei Tsai, Chin-Chi Wang
  • Publication number: 20180138282
    Abstract: Vertical gate all around (VGAA) devices and methods of manufacture thereof are described. A method for manufacturing a VGAA device includes: exposing a top surface and sidewalls of a first portion of a protrusion extending from a doped region, wherein a second portion of the protrusion is surrounded by a gate stack; and enlarging the first portion of the protrusion using an epitaxial growth process.
    Type: Application
    Filed: January 16, 2018
    Publication date: May 17, 2018
    Inventors: Chia-Hao Chang, Ming-Shan Shieh, Cheng-Long Chen, Chin-Chi Wang, Chi-Wen Liu, Wai-Yi Lien, Chih-Hao Wang
  • Patent number: 9899489
    Abstract: Vertical gate all around (VGAA) devices and methods of manufacture thereof are described. A method for manufacturing a VGAA device includes: exposing a top surface and sidewalls of a first portion of a protrusion extending from a doped region, wherein a second portion of the protrusion is surrounded by a gate stack; and enlarging the first portion of the protrusion using an epitaxial growth process.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: February 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hao Chang, Ming-Shan Shieh, Cheng-Long Chen, Chin-Chi Wang, Chi-Wen Liu, Wai-Yi Lien, Chih-Hao Wang
  • Patent number: 9881922
    Abstract: Vertical gate all around devices are formed by initially forming a first doped region and a second doped region that are planar with each other. A channel layer is formed over the first doped region and the second doped region, and a third doped region is formed over the channel layer. A fourth doped region is formed to be planar with the third doped region, and the first doped region, the second doped region, the third doped region, the fourth doped region, and the channel layer are patterned to form a first nanowire and a second nanowire, which are then used to form the vertical gate all around devices.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: January 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Lin Chen, Shih-Cheng Chen, Ming-Shan Shieh, Chin-Chi Wang, Wai-Yi Lien, Chih-Hao Wang
  • Publication number: 20170263505
    Abstract: A method for fabricating a fin field-effect transistor (FinFET) device includes forming a first dielectric layer over a substrate and then etching the first dielectric layer and the substrate to form a first fin and a second fin. A second dielectric layer is formed along sidewalls of the first fin and the second fin. A protection layer is deposited over the first fin and the second fin. A portion of the protection layer and the first dielectric layer on the second fin is removed and the second fin is then recessed to form a trench. A semiconductor material layer is epitaxially grown in the trench. The protection layer is removed to reveal the first fin and the second fin.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 14, 2017
    Inventors: Chih-Hao WANG, Ching-Wei TSAI, Chin-Chi WANG
  • Patent number: 9666672
    Abstract: A device includes a first fin including a first semiconductor material. A first dielectric layer is disposed over a top surface of the first fin. A sidewall of the first dielectric layer has a dip-shape profile. A second dielectric layer is disposed along sidewalls of the first fin. A top surface of the second dielectric layer is substantially coplanar with the top surface of the first fin. A second fin includes a second semiconductor material different from the first semiconductor material. An isolation region is disposed between the first fin and the second fin.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: May 30, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Ching-Wei Tsai, Chin-Chi Wang
  • Patent number: 9620607
    Abstract: A gate all around (GAA) device structure, vertical gate all around (VGAA) device structure, horizontal gate all around (HGAA) device structure and fin field effect transistor (FinFET) device structure are provided. The VGAA device structure includes a substrate and an isolation structure formed in the substrate. The VGAA device structure also includes a first transistor structure formed on the substrate, and the first transistor structure includes a vertical structure. The vertical structure includes a source region, a channel region and a drain region, and the channel region is formed between the source region and the drain region. The channel region has a horizontal portion and a sloped portion sloping downward toward the isolation structure. The VGAA device structure further includes a gate stack structure wrapping around the channel region.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Chin-Chi Wang
  • Patent number: 9620500
    Abstract: A series-connected transistor structure includes a first source, a first channel-drain structure, a second channel-drain structure, a gate dielectric layer, a gate, a first drain pad and a second drain pad. The first source is over a substrate. The first channel-drain structure is over the first source and includes a first channel and a first drain thereover. The second channel-drain structure is over the first source and substantially parallel to the first channel-drain structure and includes a second channel and a second drain thereover. The gate dielectric layer surrounds the first channel and the second channel. The gate surrounds the gate dielectric layer. The first drain pad is over and in contact with the first drain. The second drain pad is over and in contact with the second drain, in which the first drain pad and the second drain pad are separated from each other.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: April 11, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Chi Wang, Chien-Chih Lee, Tien-Wei Chiang, Ching-Wei Tsai, Chih-Ching Wang, Jon-Hsu Ho, Wen-Hsing Hsieh
  • Publication number: 20160343713
    Abstract: Vertical gate all around devices are formed by initially forming a first doped region and a second doped region that are planar with each other. A channel layer is formed over the first doped region and the second doped region, and a third doped region is formed over the channel layer. A fourth doped region is formed to be planar with the third doped region, and the first doped region, the second doped region, the third doped region, the fourth doped region, and the channel layer are patterned to form a first nanowire and a second nanowire, which are then used to form the vertical gate all around devices.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 24, 2016
    Inventors: Hong-Lin Chen, Shih-Cheng Chen, Ming-Shan Shieh, Chin-Chi Wang, Wai-Yi Lien, Chih-Hao Wang
  • Patent number: 9496256
    Abstract: A semiconductor device includes a first transistor and a second transistor. Each of the first and second transistors includes a channel. The channel of the first transistor extends in a substantially vertical direction. The channel of the second transistor extends in a substantially horizontal direction. A method for fabricating the semiconductor device is also disclosed.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: November 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chin-Chi Wang, Wu-Ping Huang, Wun-Jie Lin
  • Publication number: 20160260713
    Abstract: A series-connected transistor structure includes a first source, a first channel-drain structure, a second channel-drain structure, a gate dielectric layer, a gate, a first drain pad and a second drain pad. The first source is over a substrate. The first channel-drain structure is over the first source and includes a first channel and a first drain thereover. The second channel-drain structure is over the first source and substantially parallel to the first channel-drain structure and includes a second channel and a second drain thereover. The gate dielectric layer surrounds the first channel and the second channel. The gate surrounds the gate dielectric layer. The first drain pad is over and in contact with the first drain. The second drain pad is over and in contact with the second drain, in which the first drain pad and the second drain pad are separated from each other.
    Type: Application
    Filed: May 18, 2016
    Publication date: September 8, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Chi WANG, Chien-Chih LEE, Tien-Wei CHIANG, Ching-Wei TSAI, Chih-Ching WANG, Jon-Hsu HO, Wen-Hsing HSIEH
  • Publication number: 20160254353
    Abstract: A device includes a first fin including a first semiconductor material. A first dielectric layer is disposed over a top surface of the first fin. A sidewall of the first dielectric layer has a dip-shape profile. A second dielectric layer is disposed along sidewalls of the first fin. A top surface of the second dielectric layer is substantially coplanar with the top surface of the first fin. A second fin includes a second semiconductor material different from the first semiconductor material. An isolation region is disposed between the first fin and the second fin.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Chih-Hao Wang, Ching-Wei Tsai, Chin-Chi Wang
  • Patent number: 9431517
    Abstract: Vertical gate all around devices are formed by initially forming a first doped region and a second doped region that are planar with each other. A channel layer is formed over the first doped region and the second doped region, and a third doped region is formed over the channel layer. A fourth doped region is formed to be planar with the third doped region, and the first doped region, the second doped region, the third doped region, the fourth doped region, and the channel layer are patterned to form a first nanowire and a second nanowire, which are then used to form the vertical gate all around devices.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: August 30, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Lin Chen, Shih-Cheng Chen, Ming-Shan Shieh, Chin-Chi Wang, Wai-Yi Lien, Chih-Hao Wang
  • Publication number: 20160240626
    Abstract: Vertical gate all around (VGAA) devices and methods of manufacture thereof are described. A method for manufacturing a VGAA device includes: exposing a top surface and sidewalls of a first portion of a protrusion extending from a doped region, wherein a second portion of the protrusion is surrounded by a gate stack; and enlarging the first portion of the protrusion using an epitaxial growth process.
    Type: Application
    Filed: March 17, 2015
    Publication date: August 18, 2016
    Inventors: Chia-Hao Chang, Ming-Shan Shieh, Cheng-Long Chen, Chin-Chi Wang, Chi-Wen Liu, Wai-Yi Lien, Chih-Hao Wang
  • Publication number: 20160240623
    Abstract: Vertical gate all around (VGAA) devices and methods of manufacture thereof are described. A method for manufacturing a VGAA device includes: exposing a top surface and sidewalls of a first portion of a protrusion extending from a doped region, wherein a second portion of the protrusion is surrounded by a gate stack; and enlarging the first portion of the protrusion using an epitaxial growth process.
    Type: Application
    Filed: February 13, 2015
    Publication date: August 18, 2016
    Inventors: Chia-Hao Chang, Ming-Shan Shieh, Cheng-Long Chen, Chin-Chi Wang, Chi-Wen Liu, Wai-Yi Lien, Chih-Hao Wang