Patents by Inventor Chin-Tang Hsieh

Chin-Tang Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8471372
    Abstract: A thin flip chip package structure comprises a substrate, a chip and a heat dissipation paste, wherein the substrate comprises an insulating layer and a trace layer. The insulating layer comprises a first insulating portion and a second insulating portion, the first insulating portion comprises a first upward surface, a first downward surface, a first thickness and a recess formed on the first downward surface, wherein the recess comprises a bottom surface. The second insulating portion comprises a second upward surface, a second downward surface and a second thickness larger than the first thickness. The trace layer is at least formed on the second insulating portion, the chip disposed on top of the substrate is electrically connected with the trace layer and comprises a plurality of bumps, and the heat dissipation paste is disposed at the recess.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: June 25, 2013
    Assignee: Chipbound Technology Corporation
    Inventors: Chin-Tang Hsieh, Hou-Chang Kuo, Dueng-Shiu Tzou, Chia-Jung Tu, Gwo-Shyan Sheu
  • Patent number: 8450203
    Abstract: A bumping process comprises steps of forming a metal layer with copper on a substrate, and the metal layer with copper comprises a plurality of first zones and second zones; forming a photoresist layer on the metal layer with copper; patterning the photoresist layer to form a plurality of openings; forming a plurality of copper bumps within the openings, each of the copper bumps covers the first zones and comprises a first top surface; forming a connection layer on the first top surface; removing the photoresist layer; removing the second zones and enabling each of the first zones to form an under bump metallurgy layer, wherein the under bump metallurgy layer, the copper bump, and the connection layer possess their corresponded peripheral walls, and covering sections of a first protective layer formed on the connection layer may cover those peripheral walls to prevent ionization phenomenon.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: May 28, 2013
    Assignee: Chipbond Technology Corporation
    Inventors: Chin-Tang Hsieh, Chih-Ming Kuo
  • Patent number: 8426984
    Abstract: A substrate structure with compliant bump comprises a substrate, a plurality of bumps, and a metallic layer, wherein the substrate comprises a surface, a trace layer, and a protective layer. The trace layer comprises a plurality of conductive pads, and each of the conductive pads comprises an upper surface. The protective layer comprises a plurality of openings. The bumps are formed on the surface, and each of the bumps comprises a top surface, an inner surface and an outer surface and defines a first body and a second body. The first body is located on the surface. The second body is located on top of the first body. The metallic layer is formed on the top surface, the inner surface, and the upper surface.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 23, 2013
    Assignee: Chipbond Technology Corporation
    Inventor: Chin-Tang Hsieh
  • Publication number: 20130062756
    Abstract: A substrate structure with compliant bump comprises a substrate, a plurality of bumps, and a metallic layer, wherein the substrate comprises a surface, a trace layer, and a protective layer. The trace layer comprises a plurality of conductive pads, and each of the conductive pads comprises an upper surface. The protective layer comprises a plurality of openings. The bumps are formed on the surface, and each of the bumps comprises a top surface, an inner surface and an outer surface and defines a first body and a second body. The first body is located on the surface. The second body is located on top of the first body. The metallic layer is formed on the top surface, the inner surface, and the upper surface.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventor: Chin-Tang Hsieh
  • Publication number: 20130022830
    Abstract: A bumping process comprises steps of forming a metal layer with copper on a substrate, and the metal layer with copper comprises a plurality of first zones and second zones; forming a photoresist layer on the metal layer with copper; patterning the photoresist layer to form a plurality of openings; forming a plurality of copper bumps within the openings, each of the copper bumps covers the first zones and comprises a first top surface; forming a connection layer on the first top surface; removing the photoresist layer; removing the second zones and enabling each of the first zones to form an under bump metallurgy layer, wherein the under bump metallurgy layer, the copper bump, and the connection layer possess their corresponded peripheral walls, and covering sections of a first protective layer formed on the connection layer may cover those peripheral walls to prevent ionization phenomenon.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Chin-Tang Hsieh, Chih-Ming Kuo
  • Publication number: 20120080783
    Abstract: A thin flip chip package structure comprises a substrate, a chip and a heat dissipation paste, the substrate comprises an insulating layer and a trace layer. The insulating layer comprises a top surface, a bottom surface and a plurality of apertures formed at the bottom surface, wherein the bottom surface of the insulating layer comprises a disposing area and a non-disposing area. Each of the apertures is located at the disposing area and comprises a lateral wall and a base surface. A first thickness is formed between the base surface and the insulating layer, a second thickness is formed between the top surface and the bottom surface, and the second thickness is larger than the first thickness. The chip disposed on the top surface comprises a chip surface and a plurality of bumps. The heat dissipation paste at least fills the apertures and contacts the base surface.
    Type: Application
    Filed: June 20, 2011
    Publication date: April 5, 2012
    Inventors: Chin-Tang Hsieh, Rou-Chang Kuo, Dueng-Shiu Tzou, Chia-Jung Tu, Gwo-Shyan Sheu
  • Publication number: 20120074545
    Abstract: A thin flip chip package structure comprises a substrate, a chip and a heat dissipation paste, wherein the substrate comprises an insulating layer and a trace layer. The insulating layer comprises a first insulating portion and a second insulating portion, the first insulating portion comprises a first upward surface, a first downward surface, a first thickness and a recess formed on the first downward surface, wherein the recess comprises a bottom surface. The second insulating portion comprises a second upward surface, a second downward surface and a second thickness larger than the first thickness. The trace layer is at least formed on the second insulating portion, the chip disposed on top of the substrate is electrically connected with the trace layer and comprises a plurality of bumps, and the heat dissipation paste is disposed at the recess.
    Type: Application
    Filed: June 20, 2011
    Publication date: March 29, 2012
    Inventors: Chin-Tang Hsieh, Hou-Chang Kuo, Dueng-Shiu Tzou, Chia-Jung Tu, Gwo-Shyan Sheu
  • Publication number: 20060125577
    Abstract: An acoustic resonator device includes a semiconductor substrate, a FBAR (thin film bulk acoustic resonator) and a support plate. The FBAR is fabricated on the upper surface of the semiconductor substrate. The semiconductor substrate has a resonant cavity through the upper and the lower surfaces thereof. The support plate is attached to the lower surface of the semiconductor substrate to shelter the opening of the resonant cavity. Moreover, the support plate can provide a larger die-attaching area for the acoustic resonator device, for the protection of the resonant cavity from chipping during wafer sawing.
    Type: Application
    Filed: December 13, 2004
    Publication date: June 15, 2006
    Inventors: Chin-Tang Hsieh, Ying-Chung Chen, Sean Wu, Chen-Kuei Chung, Kuo-Sheng Kao, Chin-Chi Chen
  • Patent number: D427287
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: June 27, 2000
    Inventors: Ming-Te Wei, Chin-Tang Hsieh, Philip F. Friedrich
  • Patent number: D427666
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: July 4, 2000
    Inventors: Ming-Te Wei, Chin-Tang Hsieh, Philip F. Friedrich
  • Patent number: D430924
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: September 12, 2000
    Inventors: Ming-Te Wei, Chin-Tang Hsieh, Philip F. Friedrich