Patents by Inventor Ching-Fang Lin
Ching-Fang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240395687Abstract: An electronic package and a carrier structure thereof are provided, in which the carrier structure is used for disposing a semiconductor chip and defined with a die placement area and a peripheral area adjacent to the die placement area on a surface thereof, and a winding shape of conductive traces arranged at a boundary between the die placement area and the peripheral area is a continuous bending shape with notches to facilitate dispersion of thermal stress, thereby preventing the problem of breakage from occurring to line segments of the conductive traces.Type: ApplicationFiled: August 7, 2023Publication date: November 28, 2024Inventors: Ching-Chih LIN, Wen-Hsin WANG, Shin-Yu WANG, Hsiu-Fang CHIEN
-
Publication number: 20240311638Abstract: A method of predicting the efficacy of natural killer cells, including: generating a plurality of training data corresponding to a plurality of donors based on a characteristic factor and a corresponding killing result against the target cancer cells of a plurality of cultured natural killer cells from the donors; obtaining a trained neural network model by inputting the plurality of training data into a neural network model; inputting a to-be-tested input vector corresponding to at least one characteristic factor of a to-be-tested natural killer cell into the trained neural network model to obtain an outputted result vector of the trained neural network model, wherein the result vector indicates a predicted killing result corresponding to the target cancer cell after applying the to-be-tested natural killer cell; and determining a quality of the to-be-tested natural killer cell based on the predicted killing result.Type: ApplicationFiled: December 28, 2023Publication date: September 19, 2024Applicant: Industrial Technology Research InstituteInventors: Nien-Tzu Chou, Yu-Yu Lin, Ching-Fang Lu, Jian-Hao Li, Ting-Hsuan Chen, Cheng-Tai Chen
-
Patent number: 11166197Abstract: A backhaul bandwidth management method for a wireless network is provided. Firstly, a backhaul connection mode is adjusted by a network device in a backhaul network according to a wireless capability. Then, a backhaul guaranteed bandwidth is guaranteed by the network device according to at least one of a dedicated service set identifier (SSID), a dedicated radio frequency (RF) band and a dedicated wireless mode. Then, a bandwidth allocation algorithm is executed by the network device to ensure that at least one backhaul transmission connection has the backhaul guaranteed bandwidth. Finally, a backhaul SSID is set to a first wireless network standard only mode by the network device to ensure that data transmission will not be interfered with by other network devices transmitting data according to a second wireless network standard in the backhaul network.Type: GrantFiled: April 30, 2020Date of Patent: November 2, 2021Inventors: Chih-Fang Lee, Ching-Fang Lin
-
Publication number: 20200359266Abstract: A backhaul bandwidth management method for a wireless network is provided. Firstly, a backhaul connection mode is adjusted by a network device in a backhaul network according to a wireless capability. Then, a backhaul guaranteed bandwidth is guaranteed by the network device according to at least one of a dedicated service set identifier (SSID), a dedicated radio frequency (RF) band and a dedicated wireless mode. Then, a bandwidth allocation algorithm is executed by the network device to ensure that at least one backhaul transmission connection has the backhaul guaranteed bandwidth. Finally, a backhaul SSID is set to a first wireless network standard only mode by the network device to ensure that data transmission will not be interfered with by other network devices transmitting data according to a second wireless network standard in the backhaul network.Type: ApplicationFiled: April 30, 2020Publication date: November 12, 2020Inventors: Chih-Fang LEE, Ching-Fang LIN
-
Patent number: 8682416Abstract: A miniature in-vivo robotic module to be used for conducting dexterous manipulations on organs and other target entities in a patient's abdominal or peritoneal cavity as part of Natural Orifice Transluminal Endoscopic Surgery (NOTES) is disclosed in this invention. The robotic module is a serial manipulator consisting of seven cylindrical links and six actively controllable rotational degrees of freedom, thereby enabling an end effector equipped with a laparoscopic type instrument to assume a commanded position and orientation within the robot's workspace. After overtube navigation starting from a natural orifice or preexisting wound, the module must be anchored and guided to a designated location along the inner abdominal cavity wall. This is accomplished via magnetic coupling forces between internal embedded magnets and magnets fixed to the end of a different robotic manipulator located external to the patient.Type: GrantFiled: July 8, 2011Date of Patent: March 25, 2014Assignee: American GNC CorporationInventors: Ching-Fang Lin, Stephen Oonk
-
Patent number: 8670964Abstract: A Modeling, Design, Analysis, Simulation, and Evaluation (MDASE) aspects of gyrocompassing in relation to Far-Target Location (FTL) systems include a Gyrocompass Modeling and Simulation System (GMSS). The GMSS has four major components: the 6 degree-of-freedom (6DOF) Motion Simulator, the IMU Sensor Simulator, the Gyrocompass System and Calibration Process Simulator, and the Gyrocompass System Evaluation and Analysis Module. The modular architecture of GMSS makes it very flexible for programming, testing, and system maintenance. The realization of the GMSS is based on any computer platforms for the GMSS software is written in high level language and is portable. The stochastic signal analysis and sensor testing and modeling tools include a suite of generic statistical analysis software, including Allan Variance and power spectral density (PSD) analysis tools, which are available to every GMSS module and greatly enhanced the system functionality.Type: GrantFiled: September 24, 2010Date of Patent: March 11, 2014Assignee: American GNC CorporationInventor: Ching-Fang Lin
-
Patent number: 8509965Abstract: Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.Type: GrantFiled: December 4, 2007Date of Patent: August 13, 2013Assignee: American GNC CorporationInventor: Ching-Fang Lin
-
Patent number: 8510234Abstract: A real time kernel for deploying health monitoring functions in Condition Base Maintenance (CBM) and Real Time Monitoring (RTM) systems is disclosed in this invention. The Optimized Neuro Genetic Fast Estimator (ONGFE) allows embedding failure detection, identification, and prognostics (FDI&P) capability by using Intelligent Software Element (ISE) based upon Artificial Neural Network (ANN). ONGFE enables embedded fast and on-line training for designing ANNs, which perform very high performance FDI&P functions. An advantage is the optimization block based on pseudogenetic algorithms, which compensate for effects due to initial weight values and local minimums without the computational burden of genetic algorithms. It provides a synchronization block for communication with secondary diagnostic modules. Also a scheme for conducting sensor data validation is embedded in Smart Sensors (SS). The algorithms are designed for a distributed, scalar, and modular deployment.Type: GrantFiled: January 5, 2011Date of Patent: August 13, 2013Assignee: American GNC CorporationInventors: Francisco J. Maldonado Diaz, Ching-Fang Lin
-
Publication number: 20130012821Abstract: A miniature in-vivo robotic module to be used for conducting dexterous manipulations on organs and other target entities in a patient's abdominal or peritoneal cavity as part of Natural Orifice Transluminal Endoscopic Surgery (NOTES) is disclosed in this invention. The robotic module is a serial manipulator consisting of seven cylindrical links and six actively controllable rotational degrees of freedom, thereby enabling an end effector equipped with a laparoscopic type instrument to assume a commanded position and orientation within the robot's workspace. After overtube navigation starting from a natural orifice or preexisting wound, the module must be anchored and guided to a designated location along the inner abdominal cavity wall. This is accomplished via magnetic coupling forces between internal embedded magnets and magnets fixed to the end of a different robotic manipulator located external to the patient.Type: ApplicationFiled: July 8, 2011Publication date: January 10, 2013Inventors: Ching-Fang Lin, Stephen Oonk
-
Patent number: 8311757Abstract: An innovative configuration of Miniaturized Smart Self-calibration EPD for mortar applications, as the azimuth/heading and elevation measurement device. This innovative EPD configuration uses only two FOGs or DTG and accelerometers and it is self-contained. This leads to a new EPD implementation that produces a small and light device with lower cost and adequate accuracy for the small dismounted mortar applications.Type: GrantFiled: August 14, 2008Date of Patent: November 13, 2012Assignee: American GNC CorporationInventor: Ching-Fang Lin
-
Patent number: 8275193Abstract: This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.Type: GrantFiled: January 8, 2008Date of Patent: September 25, 2012Assignee: America GNC CorporationInventor: Ching-Fang Lin
-
Patent number: 8229163Abstract: The technology of the 4D-GIS system deploys a GIS-based algorithm used to determine the location of a moving target through registering the terrain image obtained from a Moving Target Indication (MTI) sensor or small Unmanned Aerial Vehicle (UAV) camera with the digital map from GIS. For motion prediction the target state is estimated using an Extended Kalman Filter (EKF). In order to enhance the prediction of the moving target's trajectory a fuzzy logic reasoning algorithm is used to estimate the destination of a moving target through synthesizing data from GIS, target statistics, tactics and other past experience derived information, such as, likely moving direction of targets in correlation with the nature of the terrain and surmised mission.Type: GrantFiled: August 22, 2008Date of Patent: July 24, 2012Assignee: American GNC CorporationInventors: Norman P. Coleman, Ching-Fang Lin
-
Patent number: 8195343Abstract: A method and system for multi-tracking among independent individuals without a monitoring center, where an individual is a person, a vehicle, or any other property, enables the individuals to be networked in a group and each individual to search and track other individuals of interest. The portable multi-tracking system is also capable of tracking personnel inside a building, where a self-contained positioning device provides continuous carrier's position information. In the open area a GPS (Global Positioning System) unit is activated to provide precision absolute position data which can be blended with the self-contained data to improve the accuracy and robustness of the positioning services. Thus the present invention provides excellent position tracking outside a building.Type: GrantFiled: May 19, 2008Date of Patent: June 5, 2012Inventor: Ching-Fang Lin
-
Patent number: 8005635Abstract: A method and system for Self-calibrated Azimuth and Attitude Accuracy Enhancing are disclosed, wherein SAAAEMS approach is based on fully auto-calibration self-contained INS principles, not depending on magnetometers for azimuth/heading determination, and thus the system outputs and performance are not affected by the environmental magnetic fields. In order to reduce the system size and cost, this new innovative methods and algorithms are used for SAAAEMS system configuration and integration. Compared to a conventional INS for gyrocompassing, AGNC's approach uses a smaller number of high accuracy sensors: SAAAEMS uses only one 2-axis high accuracy gyro (for example, one DTG) instead of 3-axis; the third axis gyro is a MEMS gyro. It uses only 2 high accuracy accelerometers instead of 3, since the two accelerometers are used only for gyrocompassing not for navigation. These two changes to the conventional INS system configuration remarkably reduce the whole system size and cost.Type: GrantFiled: August 14, 2008Date of Patent: August 23, 2011Inventor: Ching-Fang Lin
-
Publication number: 20110167024Abstract: A real time kernel for deploying health monitoring functions in Condition Base Maintenance (CBM) and Real Time Monitoring (RTM) systems is disclosed in this invention. The Optimized Neuro Genetic Fast Estimator (ONGFE) allows embedding failure detection, identification, and prognostics (FDI&P) capability by using Intelligent Software Element (ISE) based upon Artificial Neural Network (ANN). ONGFE enables embedded fast and on-line training for designing ANNs, which perform very high performance FDI&P functions. An advantage is the optimization block based on pseudogenetic algorithms, which compensate for effects due to initial weight values and local minimums without the computational burden of genetic algorithms. It provides a synchronization block for communication with secondary diagnostic modules. Also a scheme for conducting sensor data validation is embedded in Smart Sensors (SS). The algorithms are designed for a distributed, scalar, and modular deployment.Type: ApplicationFiled: January 5, 2011Publication date: July 7, 2011Inventors: Francisco J. Maldonado Diaz, Ching-Fang Lin
-
Publication number: 20110093250Abstract: A Modeling, Design, Analysis, Simulation, and Evaluation (MDASE) aspects of gyrocompassing in relation to Far-Target Location (FTL) systems include a Gyrocompass Modeling and Simulation System (GMSS). The GMSS is a modularized software system which has four major components: the 6DOF Motion Simulator, the IMU Sensor Simulator, the Gyrocompass System and Calibration Process Simulator, the Gyrocompass System Evaluation and Analysis Module. Each module has one or two graphic user interfaces (GUIs) as user interfaces for simulation components selection and parameter setting. The modular architecture of GMSS makes it very flexible for programming and testing. And, the component-based software development technology greatly eases system extension and maintenance. The simulators can be used as either an off-line tool or as a real-time simulation tool. The realization of the GMSS can be based on any computer platforms, for it is written in high level language and tools and is portable.Type: ApplicationFiled: September 24, 2010Publication date: April 21, 2011Inventor: Ching-Fang Lin
-
Publication number: 20100283832Abstract: This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.Type: ApplicationFiled: January 8, 2008Publication date: November 11, 2010Inventor: Ching-Fang Lin
-
Patent number: 7548835Abstract: The present invention provides a method and system for an innovative design of the automatic stabilization and pointing control of a device based on the MEMS technology, which is small enough and has acceptable accuracy to be integrated into many application systems, such as, laser pointing systems, telescopic systems, imaging systems, and optical communication systems. The stabilization mechanism configuration design is based on utilization of AGNC commercial products, the coremicro IMU and the coremicro AHRS/INS/GPS Integration Unit. The coremicro AHRS/INS/GPS Integration Unit is used as the processing platform core for the design of the MEMS coremicro IMU based stabilization mechanism.Type: GrantFiled: May 23, 2007Date of Patent: June 16, 2009Assignee: American GNC CorporationInventor: Ching-Fang Lin
-
Publication number: 20090089001Abstract: A method and system for Self-calibrated Azimuth and Attitude Accuracy Enhancing are disclosed, wherein SAAAEMS approach is based on fully auto-calibration self-contained INS principles, not depending on magnetometers for azimuth/heading determination, and thus the system outputs and performance are not affected by the environmental magnetic fields. In order to reduce the system size and cost, this new innovative methods and algorithms are used for SAAAEMS system configuration and integration. Compared to a conventional INS for gyrocompassing, AGNC's approach uses a smaller number of high accuracy sensors: SAAAEMS uses only one 2-axis high accuracy gyro (for example, one DTG) instead of 3-axis; the third axis gyro is a MEMS gyro. It uses only 2 high accuracy accelerometers instead of 3, since the two accelerometers are used only for gyrocompassing not for navigation. These two changes to the conventional INS system configuration remarkably reduce the whole system size and cost.Type: ApplicationFiled: August 14, 2008Publication date: April 2, 2009Inventor: Ching-Fang Lin
-
Publication number: 20090087029Abstract: The technology of the 4D-GIS system deploys a GIS-based algorithm used to determine the location of a moving target through registering the terrain image obtained from a Moving Target Indication (MTI) sensor or small Unmanned Aerial Vehicle (UAV) camera with the digital map from GIS. For motion prediction the target state is estimated using an Extended Kalman Filter (EKF). In order to enhance the prediction of the moving target's trajectory a fuzzy logic reasoning algorithm is used to estimate the destination of a moving target through synthesizing data from GIS, target statistics, tactics and other past experience derived information, such as, likely moving direction of targets in correlation with the nature of the terrain and surmised mission.Type: ApplicationFiled: August 22, 2008Publication date: April 2, 2009Inventors: Norman P. Coleman, Ching-Fang Lin