Patents by Inventor Ching-Fang Lin

Ching-Fang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090073034
    Abstract: A method and system for multi-tracking among independent individuals without a monitoring center, where an individual is a person, a vehicle, or any other property, enables the individuals to be networked in a group and each individual to search and track other individuals of interest. The portable multi-tracking system is also capable of tracking personnel inside a building, where a self-contained positioning device provides continuous carrier's position information. In the open area a GPS (Global Positioning System) unit is activated to provide precision absolute position data which can be blended with the self-contained data to improve the accuracy and robustness of the positioning services. Thus the present invention provides excellent position tracking outside a building.
    Type: Application
    Filed: May 19, 2008
    Publication date: March 19, 2009
    Inventor: Ching-Fang Lin
  • Publication number: 20090070058
    Abstract: An innovative configuration of Miniaturized Smart Self-calibration EPD for mortar applications, as the azimuth/heading and elevation measurement device. This innovative EPD configuration uses only two FOGs or DTG and accelerometers and it is self-contained. This leads to a new EPD implementation that produces a small and light device with lower cost and adequate accuracy for the small dismounted mortar applications.
    Type: Application
    Filed: August 14, 2008
    Publication date: March 12, 2009
    Inventor: Ching-Fang Lin
  • Publication number: 20080243383
    Abstract: Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.
    Type: Application
    Filed: December 4, 2007
    Publication date: October 2, 2008
    Inventor: Ching-Fang Lin
  • Patent number: 7409290
    Abstract: A improved positioning and navigation method and system thereof can substantially solve the problems encountered in global positioning system-only and inertial navigation system-only, such as loss of global positioning satellite signal, sensibility to jamming and spoofing, and inertial solution's drift over time, in which the velocity and acceleration from an inertial navigation processor and an attitude and heading solution from an AHRS processor are used to aid the code and carrier phase tracking of the global positioning system satellite signals, so as to enhance the performance of the global positioning and inertial integration system, even in heavy jamming and high dynamic environments and when the GPS satellite signals are not available.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: August 5, 2008
    Assignee: American GNC Corporation
    Inventor: Ching-Fang Lin
  • Patent number: 7376262
    Abstract: An object positioning solves said problems encountered in machine vision, which employs electro-optic (EO) image sensors enhanced with integrated laser ranger, global positioning system/inertial measurement unit, and integrates these data to get reliable and real time object position. An object positioning and data integrating system comprises EO sensors, a MEMS IMU, a GPS receiver, a laser ranger, a preprocessing module, a segmentation module, a detection module, a recognition module, a 3D positioning module, and a tracking module, in which autonomous, reliable and real time object positioning and tracking can be achieved.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: May 20, 2008
    Assignee: American GNC Corporation
    Inventors: Guohui Hu, Norman Coleman, Ching-Fang Lin
  • Publication number: 20080071480
    Abstract: The present invention provides a method and system for an innovative design of the automatic stabilization and pointing control of a device based on the MEMS technology, which is small enough and has acceptable accuracy to be integrated into many application systems, such as, laser pointing systems, telescopic systems, imaging systems, and optical communication systems. The stabilization mechanism configuration design is based on utilization of AGNC commercial products, the coremicro IMU and the coremicro AHRS/INS/GPS Integration Unit. The coremicro AHRS/INS/GPS Integration Unit is used as the processing platform core for the design of the MEMS coremicro IMU based stabilization mechanism.
    Type: Application
    Filed: May 23, 2007
    Publication date: March 20, 2008
    Inventor: Ching-Fang Lin
  • Patent number: 7239976
    Abstract: A platform residing viewing sensor and a pointing system/weapon. An operator system is remotely monitoring the scene on a display as viewed by the viewing sensor such that an operator system can gaze, acquire and track targets by scanning the scene with eyes and locking the eyesight onto a selected target and track the target with the eyes. The system further includes a dual camera sensor that follows and monitors the operator system's eyes motion so that the operator system can simultaneously monitor the external viewing sensor's scene, locking and tracking some selected target. The display coordinates of the selected target are utilized to point the pointing system/weapon on the external platform so that the operator system can fire at the target as desired. The problem is thus summarized as one of controlling the weapon pointing, movement and firing on a target that has been selected and is tracked by the eyes of an operator system viewing a display.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: July 3, 2007
    Assignee: American GNC Corporation
    Inventors: Norman Coleman, Ken Lam, Ching-Fang Lin
  • Patent number: 7239975
    Abstract: The present invention provides a method and system for an innovative design of the automatic stabilization and pointing control of a device based on the MEMS technology, which is small enough and has acceptable accuracy to be integrated into many application systems, such as, laser pointing systems, telescopic systems, imaging systems, and optical communication systems. The stabilization mechanism configuration design is based on utilization of AGNC commercial products, the coremicro IMU and the coremicro AHRS/INS/GPS Integration Unit. The coremicro AHRS/INS/GPS Integration Unit is used as the processing platform core for the design of the MEMS coremicro IMU based stabilization mechanism.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: July 3, 2007
    Assignee: American GNC Corporation
    Inventors: Norman Coleman, George Papanagopoulos, Ken Lam, Ching-Fang Lin
  • Publication number: 20070057842
    Abstract: A platform residing viewing sensor and a pointing system/weapon. An operator system is remotely monitoring the scene on a display as viewed by the viewing sensor such that an operator system can gaze, acquire and track targets by scanning the scene with eyes and locking the eyesight onto a selected target and track the target with the eyes. The system further includes a dual camera sensor that follows and monitors the operator system's eyes motion so that the operator system can simultaneously monitor the external viewing sensor's scene, locking and tracking some selected target. The display coordinates of the selected target are utilized to point the pointing system/weapon on the external platform so that the operator system can fire at the target as desired. The problem is thus summarized as one of controlling the weapon pointing, movement and firing on a target that has been selected and is tracked by the eyes of an operator system viewing a display.
    Type: Application
    Filed: October 27, 2006
    Publication date: March 15, 2007
    Inventors: Norman Coleman, Ken Lam, Ching-Fang Lin
  • Patent number: 7187451
    Abstract: An apparatus for measuring a two-dimensional displacement is disclosed and includes a laser light source, a collimator lens, a beam splitter, a plurality of staggered conjugate optic lens and a plurality of interference optical dephasing modules. The laser light source provides a laser light incident on the collimator lens to generate collimated laser beams. Each of the collimated laser beams are incident on the beam splitter to be separated into two incident beams and incident on a two-dimensional diffraction unit to generate a plurality of first diffracted beams and a plurality of second-order diffracted beams. The staggered conjugate optic lens are used to reflect the first diffracted beams so that the first diffracted beams return to the two-dimensional diffraction unit to generate a plurality of second diffracted beams where the second diffracted beams and the second-order diffracted beams generated as a result of the first diffraction of the beams stagger.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: March 6, 2007
    Assignee: Industrial Technology Reserach Institute
    Inventors: Ching-Fen Kao, Chung-Chu Chang, Ching-Fang Lin
  • Patent number: 7162367
    Abstract: A self-contained/interruption-free earth's surface positioning method and system, carried by a user on the earth's surface, includes an inertial measurement unit, a north finder, a velocity producer, an altitude measurement device, a GPS (Global Positioning System) receiver, a data link, a navigation processor, a wireless communication device, and a display device and map database. Output signals of the inertial measurement unit, the velocity producer, altitude measurement device, the GPS receiver, the data link, and the north finder are processed to obtain highly accurate position measurements of the user. The user's position information can be exchanged with other users through the wireless communication device, and the location and surrounding information can be displayed on the display device by accessing a map database with the user position information.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: January 9, 2007
    Assignee: American GNC Corporation
    Inventors: Ching-Fang Lin, Hiram McCall
  • Publication number: 20060287824
    Abstract: An interruption free navigator includes an inertial measurement unit, a north finder, a velocity producer, a positioning assistant, a navigation processor, an altitude measurement, an object detection system, a wireless communication device, and a display device and map database. Output signals of the inertial measurement unit, the velocity producer, the positioning assistant, the altitude measurement, the object detection system, and the north finder are processed to obtain highly accurate position measurements of the person. The user's position information can be exchanged with other users through the wireless communication device, and the location and surrounding information can be displayed on the display device by accessing a map database with the person position information.
    Type: Application
    Filed: January 28, 2006
    Publication date: December 21, 2006
    Inventor: Ching-Fang Lin
  • Patent number: 7143130
    Abstract: A method and system for multi-tracking among independent individuals without a monitoring center, where an individual is a person, a vehicle, or any other property, enables the individuals to be networked in a group and each individual to search and track other individuals of interest. The portable multi-tracking system is also capable of tracking personnel inside a building, where a self-contained positioning device provides continuous carrier's position information. In the open area a GPS (Global Positioning System) unit is activated to provide precision absolute position data which can be blended with the self-contained data to improve the accuracy and robustness of the positioning services. Thus the present invention provides excellent position tracking outside a building.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: November 28, 2006
    Inventor: Ching-Fang Lin
  • Publication number: 20060265120
    Abstract: The present invention provides a method and system for an innovative design of the automatic stabilization and pointing control of a device based on the MEMS technology, which is small enough and has acceptable accuracy to be integrated into many application systems, such as, laser pointing systems, telescopic systems, imaging systems, and optical communication systems. The stabilization mechanism configuration design is based on utilization of AGNC commercial products, the coremicro IMU and the coremicro AHRS/INS/GPS Integration Unit. The coremicro AHRS/INS/GPS Integration Unit is used as the processing platform core for the design of the MEMS coremicro IMU based stabilization mechanism.
    Type: Application
    Filed: August 24, 2005
    Publication date: November 23, 2006
    Inventors: Norman Coleman, George Papanagopoulos, Ken Lam, Ching-Fang Lin
  • Publication number: 20060100781
    Abstract: A self-contained/interruption-free earth's surface positioning method and system, carried by a user on the earth's surface, includes an inertial measurement unit, a north finder, a velocity producer, an altitude measurement device, a GPS (Global Positioning System) receiver, a data link, a navigation processor, a wireless communication device, and a display device and map database. Output signals of the inertial measurement unit, the velocity producer, altitude measurement device, the GPS receiver, the data link, and the north finder are processed to obtain highly accurate position measurements of the user. The user's position information can be exchanged with other users through the wireless communication device, and the location and surrounding information can be displayed on the display device by accessing a map database with the user position information.
    Type: Application
    Filed: December 18, 2000
    Publication date: May 11, 2006
    Inventors: Ching-Fang Lin, Hiram McCall
  • Publication number: 20050231425
    Abstract: A networked position multiple tracking system includes a plurality of individual units which are networked multi-tracking devices networked and their location information is shared via a data link. The individual units are organized as groups and groups are further networked to facilitate the data transfer in a large area or different geographical areas. The typical applications of the present invention include tracking of family members; tracking of cab vehicles of a taxi company; tracking of law enforcement officials pursuing criminals or suspects. In a military environment, the soldiers in a regiment can track each other during military missions by using the present invention. The pilots of aircraft in a formation can use the multi-tracking system to maintain formation flight and evade potential collision.
    Type: Application
    Filed: June 1, 2005
    Publication date: October 20, 2005
    Inventors: Norman Coleman, Ken Lam, George Papanagopoulos, Ching-Fang Lin
  • Publication number: 20050234644
    Abstract: A improved positioning and navigation method and system thereof can substantially solve the problems encountered in global positioning system-only and inertial navigation system-only, such as loss of global positioning satellite signal, sensibility to jamming and spoofing, and inertial solution's drift over time, in which the velocity and acceleration from an inertial navigation processor and an attitude and heading solution from an AHRS processor are used to aid the code and carrier phase tracking of the global positioning system satellite signals, so as to enhance the performance of the global positioning and inertial integration system, even in heavy jamming and high dynamic environments and when the GPS satellite signals are not available.
    Type: Application
    Filed: April 8, 2005
    Publication date: October 20, 2005
    Inventor: Ching-Fang Lin
  • Patent number: 6940999
    Abstract: An efficient approach to exploit hyperspectral imagery and detect target of interest is disclosed. This approach uses proximity pixels as reference signatures to detect potential discontinuity that represents material of unknown existing on the terrain. By incorporating signature of a chosen material of interest, this approach provides an effective way for target detection and identification. An evolutionary algorithm is employed to estimate the abundance of material of interest.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: September 6, 2005
    Assignee: American GNC Corp.
    Inventor: Ching-Fang Lin
  • Patent number: 6879875
    Abstract: The design of the low cost GPS/IMU positioning and data integrating method, which employs integrated global positioning system/inertial measurement unit enhanced with dual antenna GPS carrier phase measurements to initialize and stabilize the azimuth of the low cost GPS/IMU integrated system, is performed. The utilization of the raw carrier phase measurement for the integration speeds up the ambiguity search.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: April 12, 2005
    Assignee: American GNC Corporation
    Inventors: Guohui Hu, Ching-Fang Lin
  • Publication number: 20050062981
    Abstract: An apparatus for measuring a two-dimensional displacement is disclosed and includes a laser light source, a collimator lens, a beam splitter, a plurality of staggered conjugate optic lens and a plurality of interference optical dephasing modules. The laser light source provides a laser light incident on the collimator lens to generate collimated laser beams. Each of the collimated laser beams are incident on the beam splitter to be separated into two incident beams and incident on a two-dimensional diffraction unit to generate a plurality of first diffracted beams and a plurality of second-order diffracted beams. The staggered conjugate optic lens are used to reflect the first diffracted beams so that the first diffracted beams return to the two-dimensional diffraction unit to generate a plurality of second diffracted beams where the second diffracted beams and the second-order diffracted beams generated as a result of the first diffraction of the beams stagger.
    Type: Application
    Filed: September 8, 2004
    Publication date: March 24, 2005
    Applicant: Industrial Technology Research Institute
    Inventors: Ching-Fen Kao, Chung-Chu Chang, Ching-Fang Lin