Patents by Inventor CHING-JUINN HUANG

CHING-JUINN HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240385527
    Abstract: A control system includes a plurality of pressure sensors, each to detect a pressure in a respective dynamic gas lock (DGL) nozzle control region of a plurality of DGL nozzle control regions. Each DGL nozzle control region includes one or more DGL nozzles. The control system includes a plurality of mass flow controllers (MFCs). Each MFC of the plurality of MFCs is to control a flow velocity in a respective DGL nozzle control region of the plurality of DGL nozzle control regions. The control system includes a controller to selectively cause one or more MFCs of the plurality of MFCs to adjust flow velocities in one or more DGL nozzle control regions of the plurality of DGL nozzle control regions based on pressures detected by the plurality of pressure sensors in DGL nozzle control regions of the plurality of DGL nozzle control regions.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: Chun-Kai CHANG, Yu Sheng CHIANG, Yu De LIOU, Chi YANG, Ching-Juinn HUANG, Po-Chung CHENG
  • Patent number: 12124178
    Abstract: A system is provided. The system includes an exposing device configured to generate a real-time image, including multiple first align marks, of a mask and an adjusting device configured to adjust an off-set of the mask from a pre-determined position to be smaller than a minimum aligning distance according to the first align marks and multiple align marks on a substrate, and further to move the mask closer to the pre-determined position to have a displacement, less than a minimum mapping distance, from the pre-determined position according to the real-time image and a reference image of the mask.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: October 22, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hao-Yu Lan, Po-Chung Cheng, Ching-Juinn Huang, Tzung-Chi Fu, Tsung-Yen Lee
  • Patent number: 12085861
    Abstract: A control system includes a plurality of pressure sensors, each to detect a pressure in a respective dynamic gas lock (DGL) nozzle control region of a plurality of DGL nozzle control regions. Each DGL nozzle control region includes one or more DGL nozzles. The control system includes a plurality of mass flow controllers (MFCs). Each MFC of the plurality of MFCs is to control a flow velocity in a respective DGL nozzle control region of the plurality of DGL nozzle control regions. The control system includes a controller to selectively cause one or more MFCs of the plurality of MFCs to adjust flow velocities in one or more DGL nozzle control regions of the plurality of DGL nozzle control regions based on pressures detected by the plurality of pressure sensors in DGL nozzle control regions of the plurality of DGL nozzle control regions.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: September 10, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Kai Chang, Yu Sheng Chiang, Yu De Liou, Chi Yang, Ching-Juinn Huang, Po-Chung Cheng
  • Publication number: 20240258095
    Abstract: A particle removal apparatus is provided. The apparatus includes a reticle holder configured to hold a reticle, a robotic arm, and a particle removal device disposed on the robotic arm. The particle removal device includes a solution spraying module, a sucking module, and a baffle. The robotic arm and the particle removal device are configured to align with a particle on the backside of the reticle. The solution spraying module is configured to spray a solution onto the particle to remove the particle. The baffle is configured to be disposed over the backside of the reticle to define enclosed area that encompasses the particle to be removed. The sucking module is configured to suck the solution on the reticle with the particles being removed.
    Type: Application
    Filed: April 15, 2024
    Publication date: August 1, 2024
    Inventors: Siao-Chian HUANG, Po-Chung CHENG, Ching-Juinn HUANG, Tzung-Chi FU, Tsung-Yen LEE
  • Patent number: 11984314
    Abstract: A particle removal method for removing particles on the backside of a reticle is provided. The method includes disposing the reticle on a reticle holder. In addition, the method includes moving a baffle defining an enclosed area that encompasses a particle to be removed on a backside of the reticle. The method further includes spraying, by a solution spraying module of a particle removal device, a solution onto the particle. The method further includes sucking, by a sucking module of the particle removal device, the solution on the reticle with the particle. The method further includes emitting, by the particle removal device, a gas onto the backside of the reticle for drying the backside.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Siao-Chian Huang, Po-Chung Cheng, Ching-Juinn Huang, Tzung-Chi Fu, Tsung-Yen Lee
  • Publication number: 20230384697
    Abstract: An extreme ultraviolet (EUV) source includes a module vessel and a scrubber system. The scrubber system may include a plurality of gutters in the module vessel. The plurality of gutters may include a first gutter and a second gutter. The second gutter may be lower than the first gutter in the module vessel. A unit volume of the second gutter is larger than a unit volume of the first gutter.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Chun-Kai CHANG, Yu Sheng CHIANG, Yu De LIOU, Chi YANG, Ching-Juinn HUANG, Po-Chung CHENG
  • Publication number: 20230367221
    Abstract: In a method of pattern formation information including a pattern size on a reticle is received. A width of an EUV radiation beam is adjusted in accordance with the information. The EUV radiation beam is scanned on the reticle. A photo resist layer is exposed with a reflected EUV radiation beam from the reticle. An increase of intensity per unit area of the EUV radiation beam on the reticle after the adjusting the width is greater when the width before adjustment is W1 compared to an increase of intensity per unit area of the EUV radiation beam on the reticle after the adjusting the width when the width before adjustment is W2 when W1>W2.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Chi YANG, Tsung-Hsun Lee, Jian-Yuan Su, Ching-Juinn Huang, Po-Chung Cheng
  • Patent number: 11815821
    Abstract: An extreme ultraviolet (EUV) source includes a module vessel and a scrubber system. The scrubber system may include a plurality of gutters in the module vessel. The plurality of gutters may include a first gutter and a second gutter. The second gutter may be lower than the first gutter in the module vessel. A unit volume of the second gutter is larger than a unit volume of the first gutter.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Kai Chang, Yu Sheng Chiang, Yu De Liou, Chi Yang, Ching-Juinn Huang, Po-Chung Cheng
  • Patent number: 11796917
    Abstract: In a method of pattern formation information including a pattern size on a reticle is received. A width of an EUV radiation beam is adjusted in accordance with the information. The EUV radiation beam is scanned on the reticle. A photo resist layer is exposed with a reflected EUV radiation beam from the reticle. An increase of intensity per unit area of the EUV radiation beam on the reticle after the adjusting the width is greater when the width before adjustment is W1 compared to an increase of intensity per unit area of the EUV radiation beam on the reticle after the adjusting the width when the width before adjustment is W2 when W1>W2.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi Yang, Tsung-Hsun Lee, Jian-Yuan Su, Ching-Juinn Huang, Po-Chung Cheng
  • Publication number: 20230266682
    Abstract: A system is provided. The system includes an exposing device configured to generate a real-time image, including multiple first align marks, of a mask and an adjusting device configured to adjust an off-set of the mask from a pre-determined position to be smaller than a minimum aligning distance according to the first align marks and multiple align marks on a substrate, and further to move the mask closer to the pre-determined position to have a displacement, less than a minimum mapping distance, from the pre-determined position according to the real-time image and a reference image of the mask.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 24, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hao-Yu LAN, Po-Chung CHENG, Ching-Juinn HUANG, Tzung-Chi FU, Tsung-Yen LEE
  • Publication number: 20230185200
    Abstract: A control system includes a plurality of pressure sensors, each to detect a pressure in a respective dynamic gas lock (DGL) nozzle control region of a plurality of DGL nozzle control regions. Each DGL nozzle control region includes one or more DGL nozzles. The control system includes a plurality of mass flow controllers (MFCs). Each MFC of the plurality of MFCs is to control a flow velocity in a respective DGL nozzle control region of the plurality of DGL nozzle control regions. The control system includes a controller to selectively cause one or more MFCs of the plurality of MFCs to adjust flow velocities in one or more DGL nozzle control regions of the plurality of DGL nozzle control regions based on pressures detected by the plurality of pressure sensors in DGL nozzle control regions of the plurality of DGL nozzle control regions.
    Type: Application
    Filed: February 6, 2023
    Publication date: June 15, 2023
    Inventors: Chun-Kai CHANG, Yu Sheng CHIANG, Yu De LIOU, Chi YANG, Ching-Juinn HUANG, Po-Chung CHENG
  • Patent number: 11675280
    Abstract: A system is disclosed. The system includes a cleaning device and a scanner device. The cleaning device is configured to clean a mask. The scanner device is coupled to the cleaning device and is configured to receive the mask, a reference image and a real-time image that is captured at the mask. The reference image includes at least one first mark image having a plurality of mapping marks on the mask. The real-time image includes at least one second mark image having the plurality of mapping marks on the mask. The scanner device is configured to map the at least one second mark image in the real-time image with the at least one first image in the reference image, when a lithography exposing process is performed. A method is also disclosed herein.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hao-Yu Lan, Po-Chung Cheng, Ching-Juinn Huang, Tzung-Chi Fu, Tsung-Yen Lee
  • Patent number: 11573495
    Abstract: A control system includes a plurality of pressure sensors, each to detect a pressure in a respective dynamic gas lock (DGL) nozzle control region of a plurality of DGL nozzle control regions. Each DGL nozzle control region includes one or more DGL nozzles. The control system includes a plurality of mass flow controllers (MFCs). Each MFC of the plurality of MFCs is to control a flow velocity in a respective DGL nozzle control region of the plurality of DGL nozzle control regions. The control system includes a controller to selectively cause one or more MFCs of the plurality of MFCs to adjust flow velocities in one or more DGL nozzle control regions of the plurality of DGL nozzle control regions based on pressures detected by the plurality of pressure sensors in DGL nozzle control regions of the plurality of DGL nozzle control regions.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: February 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Kai Chang, Yu Sheng Chiang, Yu De Liou, Chi Yang, Ching-Juinn Huang, Po-Chung Cheng
  • Publication number: 20220357662
    Abstract: In a method of pattern formation information including a pattern size on a reticle is received. A width of an EUV radiation beam is adjusted in accordance with the information. The EUV radiation beam is scanned on the reticle. A photo resist layer is exposed with a reflected EUV radiation beam from the reticle. An increase of intensity per unit area of the EUV radiation beam on the reticle after the adjusting the width is greater when the width before adjustment is W1 compared to an increase of intensity per unit area of the EUV radiation beam on the reticle after the adjusting the width when the width before adjustment is W2 when W1>W2.
    Type: Application
    Filed: December 13, 2021
    Publication date: November 10, 2022
    Inventors: Chi YANG, Tsung-Hsun LEE, Jian-Yuan SU, Ching-Juinn HUANG, Po-Chung CHENG
  • Publication number: 20220299891
    Abstract: An extreme ultraviolet (EUV) source includes a module vessel and a scrubber system. The scrubber system may include a plurality of gutters in the module vessel. The plurality of gutters may include a first gutter and a second gutter. The second gutter may be lower than the first gutter in the module vessel. A unit volume of the second gutter is larger than a unit volume of the first gutter.
    Type: Application
    Filed: August 27, 2021
    Publication date: September 22, 2022
    Inventors: Chun-Kai CHANG, Yu Sheng CHIANG, Yu De LIOU, Chi YANG, Ching-Juinn HUANG, Po-Chung CHENG
  • Publication number: 20220283506
    Abstract: A control system includes a plurality of pressure sensors, each to detect a pressure in a respective dynamic gas lock (DGL) nozzle control region of a plurality of DGL nozzle control regions. Each DGL nozzle control region includes one or more DGL nozzles. The control system includes a plurality of mass flow controllers (MFCs). Each MFC of the plurality of MFCs is to control a flow velocity in a respective DGL nozzle control region of the plurality of DGL nozzle control regions. The control system includes a controller to selectively cause one or more MFCs of the plurality of MFCs to adjust flow velocities in one or more DGL nozzle control regions of the plurality of DGL nozzle control regions based on pressures detected by the plurality of pressure sensors in DGL nozzle control regions of the plurality of DGL nozzle control regions.
    Type: Application
    Filed: August 27, 2021
    Publication date: September 8, 2022
    Inventors: Chun-Kai CHANG, Yu Sheng CHIANG, Yu De LIOU, Chi YANG, Ching-Juinn HUANG, Po-Chung CHENG
  • Patent number: 11221562
    Abstract: In some embodiments, a reticle structure is provided. The reticle structure includes a reticle stage and a reticle mounted on the reticle stage. The reticle stage includes plural first burls and plural second burls, in which the second burls are disposed on a center of the reticle stage and the first burls disposed on an edge of the reticle stage such that the first burls surround the second burls. The reticle includes a base material and a pattern layer overlying the base material. The base material is secured on the first and second burls of the reticle stage. The pattern layer includes plural first gratings, and each of the first burls is vertically aligned with one of the first gratings.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Yu Lee, Tao-Hsin Chen, Ching-Juinn Huang, Po-Chung Cheng
  • Publication number: 20210389685
    Abstract: A system is disclosed. The system includes a cleaning device and a scanner device. The cleaning device is configured to clean a mask. The scanner device is coupled to the cleaning device and is configured to receive the mask, a reference image and a real-time image that is captured at the mask. The reference image includes at least one first mark image having a plurality of mapping marks on the mask. The real-time image includes at least one second mark image having the plurality of mapping marks on the mask. The scanner device is configured to map the at least one second mark image in the real-time image with the at least one first image in the reference image, when a lithography exposing process is performed. A method is also disclosed herein.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 16, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hao-Yu LAN, Po-Chung CHENG, Ching-Juinn HUANG, Tzung-Chi FU, Tsung-Yen LEE
  • Publication number: 20210335597
    Abstract: A particle removal method for removing particles on the backside of a reticle is provided. The method includes disposing the reticle on a reticle holder. In addition, the method includes moving a baffle defining an enclosed area that encompasses a particle to be removed on a backside of the reticle. The method further includes spraying, by a solution spraying module of a particle removal device, a solution onto the particle. The method further includes sucking, by a sucking module of the particle removal device, the solution on the reticle with the particle. The method further includes emitting, by the particle removal device, a gas onto the backside of the reticle for drying the backside.
    Type: Application
    Filed: July 9, 2021
    Publication date: October 28, 2021
    Inventors: Siao-Chian HUANG, Po-Chung CHENG, Ching-Juinn HUANG, Tzung-Chi FU, Tsung-Yen LEE
  • Patent number: 11106146
    Abstract: A system is disclosed. The system includes a cleaning device and a scanner device. The cleaning device is configured to clean a mask. The scanner device is coupled to the cleaning device and is configured to receive the mask, a reference image and a real-time image that is captured at the mask. The reference image includes at least one first mark image having a plurality of mapping marks on the mask. The real-time image includes at least one second mark image having the plurality of mapping marks on the mask. The scanner device is configured to map the at least one second mark image in the real-time image with the at least one first image in the reference image, when a lithography exposing process is performed. A method is also disclosed herein.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: August 31, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hao-Yu Lan, Po-Chung Cheng, Ching-Juinn Huang, Tzung-Chi Fu, Tsung-Yen Lee