Patents by Inventor Ching-Mei Hsu

Ching-Mei Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140262038
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Application
    Filed: April 7, 2014
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur
  • Publication number: 20140273488
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Application
    Filed: April 7, 2014
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur
  • Publication number: 20140199850
    Abstract: Methods of selectively etching tungsten oxide relative to tungsten, silicon oxide, silicon nitride and/or titanium nitride are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten oxide. The plasmas effluents react with exposed surfaces and selectively remove tungsten oxide while very slowly removing other exposed materials. In some embodiments, the tungsten oxide selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 17, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sang Hyuk Kim, Dongqing Yang, Young S. Lee, Weon Young Jung, Sang-jin Kim, Ching-Mei Hsu, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20140154889
    Abstract: Methods of selectively etching tungsten relative to silicon-containing films (e.g. silicon oxide, silicon carbon nitride and (poly)silicon) as well as tungsten oxide are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten. The plasma effluents react with exposed surfaces and selectively remove tungsten while very slowly removing other exposed materials. Sequential and simultaneous methods are included to remove thin tungsten oxide which may, for example, result from exposure to the atmosphere.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 5, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Xikun Wang, Ching-Mei Hsu, Nitin K. Ingle, Zihui Li, Anchuan Wang
  • Publication number: 20140080308
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Zhijun Chen, Jingchun Zhang, Ching-Mei Hsu, Seung Park, Anchuan Wang, Nitin K. Ingle
  • Patent number: 8394550
    Abstract: A nano-patterned membrane electrode assembly (MEA) is provided, which includes an electrolyte membrane layer having a three-dimensional close-packed array of hexagonal-pyramids, a first porous electrode layer, disposed on a top surface of the electrolyte membrane layer that conforms to a top surface-shape of the three-dimensional close-packed array of hexagonal-pyramids, and a second porous electrode layer disposed on a bottom surface of said electrolyte membrane layer that conforms to a bottom surface-shape of the three-dimensional close-packed array of hexagonal-pyramids, where a freestanding nano-patterned MEA is provided.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: March 12, 2013
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Cheng-Chieh Chao, Yi Cui, Ching-Mei Hsu, Young Beom Kim, Friedrich B. Prinz
  • Patent number: 8318604
    Abstract: A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: November 27, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Jia Zhu, Ching-Mei Hsu, Stephen T. Connor, Zongfu Yu, Shanhui Fan, George Burkhard
  • Publication number: 20110121431
    Abstract: A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 26, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Jia Zhu, Ching-Mei Hsu, Stephen T. Connor, Zongfu Yu, Shanhui Fan, George Burkhard
  • Publication number: 20110095389
    Abstract: An optoelectronic device comprising an optically active layer that includes a plurality of domes is presented. The plurality of domes is arrayed in two dimensions having a periodicity in each dimension that is less than or comparable with the shortest wavelength in a spectral range of interest. By virtue of the plurality of domes, the optoelectronic device achieves high performance. A solar cell having high energy-conversion efficiency, improved absorption over the spectral range of interest, and an improved acceptance angle is presented as an exemplary device.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 28, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Jia Zhu, Ching-Mei Hsu, Shanhui Fan, Zongfu Yu
  • Publication number: 20110076589
    Abstract: A nano-patterned membrane electrode assembly (MEA) is provided, which includes an electrolyte membrane layer having a three-dimensional close-packed array of hexagonal-pyramids, a first porous electrode layer, disposed on a top surface of the electrolyte membrane layer that conforms to a top surface-shape of the three-dimensional close-packed array of hexagonal-pyramids, and a second porous electrode layer disposed on a bottom surface of said electrolyte membrane layer that conforms to a bottom surface-shape of the three-dimensional close-packed array of hexagonal-pyramids, where a freestanding nano-patterned MEA is provided.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 31, 2011
    Inventors: Cheng-Chieh Chao, Yi Cui, Ching-Mei Hsu, Young Beom Kim, Friedrich B. Prinz
  • Publication number: 20100200537
    Abstract: The current invention provides a method of fabricating nano-pore structured dense Pt electrodes using particle masking and LB deposition methods. The pore size and TPB density are easily tunable by changing initial size of the masking silica particles and the spacing between them. Compared to the solid oxide fuel cell MEAs with porous Pt electrode deposited by conventional DC sputtering method, fuel cell MEAs with the nano structured electrodes fabricated according to the current invention showed thermal and microstructural stability and superior I-V performance at 400˜450° C. Also, EIS spectra showed significant improvement in the oxygen reduction kinetics by increasing the density of charge transfer sites at the TPB. A nearly linear scaling relationship between TPB density and fuel cell performance was also demonstrated.
    Type: Application
    Filed: December 17, 2009
    Publication date: August 12, 2010
    Inventors: Young Beom Kim, Yi Cui, Ching-Mei Hsu, Steve T. Connor, Friedrich B. Prinz
  • Patent number: 5960996
    Abstract: A gas-burned glue gun includes a gun body holding a heating unit and a melting unit, and a handle holding a fuel gas tank and a gas valve, the heating unit having a nozzle tube connected to the gas valve, an electronic igniter, a flame nozzle connected the nozzle tube, an ignition button, a wire electrode connected between the electronic igniter and the flame nozzle, a gas tube connected between the nozzle tube and the flame nozzle, a piston ring moved to close/open an air port on the gas tube, the melting unit having a heat conductive glue stick tube adapted to hold a glue stick, the heat conductive glue stick tube having a heat accumulating portion protected by a guard and disposed adjacent to the flame nozzle, and a catalyzer mounted in the heat accumulating portion, wherein when the ignition button is pressed on, the electronic igniter is triggered to produce sparks in igniting discharged fuel gas from the flame nozzle, and a flame is produced to heat the catalyzer, causing the catalyzer to produce a heat
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: October 5, 1999
    Inventor: Ching-Mei Hsu
  • Patent number: D435081
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: December 12, 2000
    Inventor: Ching-Mei Hsu