Patents by Inventor Ching Sheng Chen

Ching Sheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130038
    Abstract: A transmission device for suppressing the glass-fiber effect includes a circuit board and a transmission line. The circuit board includes a plurality of glass fibers, so as to define a fiber pitch. The transmission line is disposed on the circuit board. The transmission line includes a plurality of non-parallel segments. Each of the non-parallel segments of the transmission line has an offset distance with respect to a reference line. The offset distance is longer than or equal to a half of the fiber pitch.
    Type: Application
    Filed: November 23, 2022
    Publication date: April 18, 2024
    Applicants: UNIMICRON TECHNOLOGY CORP., National Taiwan University
    Inventors: Chin-Hsun WANG, Ruey-Beei Wu, Ching-Sheng Chen, Chun-Jui Hung, Wei-Yu Liao, Chi-Min Chang
  • Publication number: 20240128626
    Abstract: A transmission device includes a daisy chain structure composed of at least three daisy chain units arranged periodically and continuously. Each of the daisy chain units includes first, second and third conductive lines, and first and second conductive pillars. The first and second conductive lines at a first layer extend along a first direction and are discontinuously arranged. The third conductive line at a second layer extends along the first direction and is substantially parallel to the first and second conductive lines. The first conductive pillar extends in a second direction. The second direction is different from the first direction. A first part of the first conductive pillar is connected to the first and third conductive lines. The second conductive pillar extends in the second direction. A first part of the second conductive pillar is connected to the second and third conductive lines.
    Type: Application
    Filed: November 25, 2022
    Publication date: April 18, 2024
    Applicants: UNIMICRON TECHNOLOGY CORP., National Taiwan University
    Inventors: Yu-Kuang WANG, Ruey-Beei Wu, Ching-Sheng Chen, Chun-Jui Huang, Wei-Yu Liao, Chi-Min Chang
  • Patent number: 11961637
    Abstract: This disclosure relates to a stretchable composite electrode and a fabricating method thereof, and particularly relates to a stretchable composite electrode including a silver nanowire layer and a flexible polymer film and a fabricating method thereof.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: April 16, 2024
    Assignee: TPK ADVANCED SOLUTIONS INC.
    Inventors: Wei Sheng Chen, Ching Mao Huang, Jia Hui Zhou, Huan Ran Yu, Shu Xiong Wang, Chin Hui Lee
  • Publication number: 20240106757
    Abstract: A method of wireless signal transmission management includes transmitting a plurality of data packets to tethering equipment from user equipment to tethering equipment, determining a size of each of the plurality of data packets by the tethering equipment, designating data packets of the plurality of data packets having a specific range of sizes as control signal packets by the tethering equipment, and prioritizing in transmitting the control signal packets to a cellular network by the tethering equipment.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Applicant: MEDIATEK INC.
    Inventors: Ching-Hao Lee, Yi-Lun Chen, Ho-Wen Pu, Yu-Yu Hung, Jun-Yi Li, Ting-Sheng Lo
  • Publication number: 20240092415
    Abstract: An HOD device, comprising: a framework; covering material, covering the frame work; at least one conductive region, provided on or in the covering material; wherein the conductive region is coupled to a capacitance detection circuit or a predetermined voltage level. The HOD device can be a vehicle control device such as a steering wheel. The conductive region comprises conductive wires which can be threads of the covering material. By this way, the arrangements of the conductive wires can be changed corresponding to the size or the shape of the frame work or any other requirements. Also, the interference caused by unstable factors can be improved since the conductive wires can be coupled to a ground source of the vehicle to provide a short capacitance sensing path.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 21, 2024
    Applicant: PixArt Imaging Inc.
    Inventors: Chin-Hua Hu, Ching-Shun Chen, Yu-Han Chen, Yu-Sheng Lin
  • Publication number: 20240087960
    Abstract: A method may include forming a mask layer on top of a first dielectric layer formed on a first source/drain and a second source/drain, and creating an opening in the mask layer and the first dielectric layer that exposes portions of the first source/drain and the second source/drain. The method may include filling the opening with a metal layer that covers the exposed portions of the first source/drain and the second source/drain, and forming a gap in the metal layer to create a first metal contact and a second metal contact. The first metal contact may electrically couple to the first source/drain and the second metal contact may electrically couple to the second source/drain. The gap may separate the first metal contact from the second metal contact by less than nineteen nanometers.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Yu-Lien HUANG, Ching-Feng FU, Huan-Just LIN, Fu-Sheng LI, Tsai-Jung HO, Bor Chiuan HSIEH, Guan-Xuan CHEN, Guan-Ren WANG
  • Patent number: 11916100
    Abstract: The present disclosure relates to an integrated chip including a dielectric structure over a substrate. A first capacitor is disposed between sidewalls of the dielectric structure. The first capacitor includes a first electrode between the sidewalls of the dielectric structure and a second electrode between the sidewalls and over the first electrode. A second capacitor is disposed between the sidewalls. The second capacitor includes the second electrode and a third electrode between the sidewalls and over the second electrode. A third capacitor is disposed between the sidewalls. The third capacitor includes the third electrode and a fourth electrode between the sidewalls and over the third electrode. The first capacitor, the second capacitor, and the third capacitor are coupled in parallel by a first contact on a first side of the first capacitor and a second contact on a second side of the first capacitor.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsuan-Han Tseng, Chun-Yuan Chen, Lu-Sheng Chou, Hsiao-Hui Tseng, Ching-Chun Wang
  • Patent number: 11895772
    Abstract: An interlayer connective structure is suitable for being formed in a wiring board, in which the wiring board includes two traces and an insulation part between the traces. The insulation part has a through hole. The interlayer connective structure located in the through hole is connected to the traces. The interlayer connective structure includes a column and a pair of protuberant parts. The protuberant parts are located at two ends of the through hole respectively and connected to the column and the traces. The protuberant parts stick out from the outer surfaces of the traces respectively. Each of the protuberant parts has a convex curved surface, in which the distance between the convex curved surface and the axis of the through hole is less than the radius of the through hole.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 6, 2024
    Assignee: Unimicron Technology Corp.
    Inventors: Chi-Min Chang, Ching-Sheng Chen, Jun-Rui Huang, Wei-Yu Liao, Yi-Pin Lin
  • Publication number: 20240023251
    Abstract: A manufacturing method for circuit board structure includes steps of providing a carrier, forming a first build-up layer including a plurality of first circuits, forming a second build-up layer including a plurality of second circuits on a side of the first build-up layer located away from the carrier, attaching a side of the second build-up layer located away from the first build-up layer to a core layer, and removing the carrier from the first build-up layer, where the first circuits are finer than the second circuits.
    Type: Application
    Filed: August 30, 2022
    Publication date: January 18, 2024
    Applicant: UNIMICRON TECHNOLOGY CORP.
    Inventors: Shao-Chien LEE, Ching-Sheng CHEN, Heng-Ming NIEN, Pei-Wei WANG
  • Publication number: 20230389172
    Abstract: Provided is a manufacturing method of circuit board, including a first substrate, a second substrate, a third substrate, a fourth substrate, multiple conductive structures, and a conductive via structure. The third substrate has an opening and includes a first dielectric layer. The opening penetrates the third substrate, and the first dielectric layer fills the opening. Multiple conductive structures are formed so that the first substrate, the second substrate, the third substrate, and the fourth substrate are electrically connected through the conductive structures to define a ground path. A conductive via structure is formed to penetrate the first substrate, the second substrate, the first dielectric layer of the third substrate, and the fourth substrate. The conductive via structure is electrically connected to the first substrate and the fourth substrate to define a signal path, and the ground path surrounds the signal path.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Applicant: Unimicron Technology Corp.
    Inventors: Chih-Chiang Lu, Heng-Ming Nien, Ching-Sheng Chen, Ching Chang, Ming-Ting Chang, Chi-Min Chang, Shao-Chien Lee, Jun-Rui Huang, Shih-Lian Cheng
  • Patent number: 11792918
    Abstract: A co-axial structure includes a substrate, a first conductive structure, a second conductive structure, and an insulating layer. The substrate includes a first surface. The first conductive structure includes a first circuit deposited on the first surface and a first via penetrating the substrate. The second conductive structure includes a second circuit deposited on the first surface and a second via penetrating the substrate. The first via and the second via extend along a first direction. The first circuit and the second circuit extend along a second direction, and the second direction is perpendicular to the first direction. The insulating layer is located between the first via and the second via. The insulating layer includes a filler. The first conductive structure and the second conductive structure are electrically insulated. The first circuit and the second circuit are coplanar.
    Type: Grant
    Filed: November 21, 2021
    Date of Patent: October 17, 2023
    Assignee: Unimicron Technology Corp.
    Inventors: Pei-Wei Wang, Heng-Ming Nien, Ching-Sheng Chen, Yi-Pin Lin, Shih-Liang Cheng
  • Patent number: 11785707
    Abstract: Provided is a circuit board, including a first substrate, a second substrate, a third substrate, a fourth substrate, multiple conductive structures, and a conductive via structure. The second substrate is disposed between the first substrate and the third substrate. The third substrate is disposed between the second substrate and the fourth substrate. The third substrate has an opening penetrating the third substrate and includes a first dielectric layer filling the opening. The conductive via structure penetrates the first substrate, the second substrate, the first dielectric layer of the third substrate, and the fourth substrate, and is electrically connected to the first substrate and the fourth substrate to define a signal path. The first substrate, the second substrate, the third substrate and the fourth substrate are electrically connected through the conductive structures to define a ground path, and the ground path surrounds the signal path.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: October 10, 2023
    Assignee: Unimicron Technology Corp.
    Inventors: Chih-Chiang Lu, Heng-Ming Nien, Ching-Sheng Chen, Ching Chang, Ming-Ting Chang, Chi-Min Chang, Shao-Chien Lee, Jun-Rui Huang, Shih-Lian Cheng
  • Patent number: 11545412
    Abstract: A package structure including a circuit board and a heat generating element is provided. The circuit board includes a plurality of circuit layers and a composite material layer. A thermal conductivity of the composite material layer is between 450 W/mK and 700 W/mK. The heat generating element is disposed on the circuit board and electrically connected to the circuit layers. Heat generated by the heat generating element is transmitted to an external environment through the composite material layer.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: January 3, 2023
    Assignee: Unimicron Technology Corp.
    Inventors: Pei-Wei Wang, Ching Sheng Chen, Ra-Min Tain, Ming-Hao Wu, Hsuan-Wei Chen
  • Publication number: 20220386460
    Abstract: An interlayer connective structure is suitable for being formed in a wiring board, in which the wiring board includes two traces and an insulation part between the traces. The insulation part has a through hole. The interlayer connective structure located in the through hole is connected to the traces. The interlayer connective structure includes a column and a pair of protuberant parts. The protuberant parts are located at two ends of the through hole respectively and connected to the column and the traces. The protuberant parts stick out from the outer surfaces of the traces respectively. Each of the protuberant parts has a convex curved surface, in which the distance between the convex curved surface and the axis of the through hole is less than the radius of the through hole.
    Type: Application
    Filed: July 15, 2021
    Publication date: December 1, 2022
    Inventors: Chi-Min CHANG, Ching-Sheng CHEN, Jun-Rui HUANG, Wei-Yu LIAO, Yi-Pin LIN
  • Publication number: 20220240368
    Abstract: A co-axial structure includes a substrate, a first conductive structure, a second conductive structure, and an insulating layer. The substrate includes a first surface. The first conductive structure includes a first circuit deposited on the first surface and a first via penetrating the substrate. The second conductive structure includes a second circuit deposited on the first surface and a second via penetrating the substrate. The first via and the second via extend along a first direction. The first circuit and the second circuit extend along a second direction, and the second direction is perpendicular to the first direction. The insulating layer is located between the first via and the second via. The insulating layer includes a filler. The first conductive structure and the second conductive structure are electrically insulated. The first circuit and the second circuit are coplanar.
    Type: Application
    Filed: November 21, 2021
    Publication date: July 28, 2022
    Inventors: Pei-Wei WANG, Heng-Ming NIEN, Ching-Sheng CHEN, Yi-Pin LIN, Shih-Liang CHENG
  • Publication number: 20220240375
    Abstract: A co-axial structure includes a substrate, a first conductive structure, a second conductive structure, and an insulating layer. The substrate includes a first surface. The first conductive structure includes a first circuit deposited on the first surface and a first via penetrating the substrate. The second conductive structure includes a second circuit deposited on the first surface and a second via penetrating the substrate. The first via and the second via extend along a first direction. The first circuit and the second circuit extend along a second direction, and the second direction is perpendicular to the first direction. The insulating layer is located between the first via and the second via. The first conductive structure and the second conductive structure are electrically insulated. The first circuit and the second circuit are coplanar.
    Type: Application
    Filed: October 28, 2021
    Publication date: July 28, 2022
    Inventors: Ching-Sheng CHEN, Chi-Min CHANG, Yi-Pin LIN, Jun-Rui HUANG
  • Publication number: 20220232695
    Abstract: A circuit board includes a first substrate, a second substrate, a third substrate, a plurality of conductive structures and a conductive via structure. The second substrate is disposed between the first substrate and the third substrate. The third substrate has an opening and includes a first dielectric layer, a second dielectric layer, and a third dielectric layer. The opening penetrates the first dielectric layer and the second dielectric layer, and the third dielectric layer fully fills the opening. The conductive via structure penetrates the first substrate, the second substrate, the third dielectric layer of the third substrate, and is electrically connected to the first substrate and the third substrate to define a signal path. The first substrate, the second substrate, and the third substrate are electrically connected through the conductive structures to define a ground path, and the ground path surrounds the signal path.
    Type: Application
    Filed: April 1, 2022
    Publication date: July 21, 2022
    Applicant: Unimicron Technology Corp.
    Inventors: Jun-Rui Huang, Chih-Chiang Lu, Yi-Pin Lin, Ching-Sheng Chen
  • Publication number: 20220230949
    Abstract: A circuit board includes a first external circuit layer, a first substrate, a second substrate, a third substrate, and a conductive through hole structure. The first substrate includes conductive pillars electrically connecting the first external circuit layer and the second substrate. The second substrate has an opening and includes a first dielectric layer. The opening penetrates the second substrate, and the first dielectric layer fills the opening. The third substrate includes an insulating layer, a second external circuit layer, and conductive holes. A conductive material layer of the conductive through hole structure covers an inner wall of a through hole and electrically connects the first and the second external circuit layers to define a signal path. The first external circuit layer, the conductive pillars, the second substrate, the conductive holes and the second external circuit layer are electrically connected to define a ground path surrounding the signal path.
    Type: Application
    Filed: October 12, 2021
    Publication date: July 21, 2022
    Applicant: Unimicron Technology Corp.
    Inventors: Chih-Chiang Lu, Hsin-Ning Liu, Jun-Rui Huang, Pei-Wei Wang, Ching Sheng Chen, Shih-Lian Cheng
  • Publication number: 20220232694
    Abstract: Provided is a circuit board, including a first substrate, a second substrate, a third substrate, a fourth substrate, multiple conductive structures, and a conductive via structure. The second substrate is disposed between the first substrate and the third substrate. The third substrate is disposed between the second substrate and the fourth substrate. The third substrate has an opening penetrating the third substrate and includes a first dielectric layer filling the opening. The conductive via structure penetrates the first substrate, the second substrate, the first dielectric layer of the third substrate, and the fourth substrate, and is electrically connected to the first substrate and the fourth substrate to define a signal path. The first substrate, the second substrate, the third substrate and the fourth substrate are electrically connected through the conductive structures to define a ground path, and the ground path surrounds the signal path.
    Type: Application
    Filed: October 8, 2021
    Publication date: July 21, 2022
    Applicant: Unimicron Technology Corp.
    Inventors: Chih-Chiang Lu, Heng-Ming Nien, Ching-Sheng Chen, Ching Chang, Ming-Ting Chang, Chi-Min Chang, Shao-Chien Lee, Jun-Rui Huang, Shih-Lian Cheng
  • Publication number: 20210074606
    Abstract: A package structure including a circuit board and a heat generating element is provided. The circuit board includes a plurality of circuit layers and a composite material layer. A thermal conductivity of the composite material layer is between 450 W/mK and 700 W/mK. The heat generating element is disposed on the circuit board and electrically connected to the circuit layers. Heat generated by the heat generating element is transmitted to an external environment through the composite material layer.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 11, 2021
    Applicant: Unimicron Technology Corp.
    Inventors: Pei-Wei Wang, Ching Sheng Chen, Ra-Min Tain, Ming-Hao Wu, Hsuan-Wei Chen