Patents by Inventor Ching Wei Shen

Ching Wei Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220317408
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Application
    Filed: June 21, 2022
    Publication date: October 6, 2022
    Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
  • Patent number: 11397302
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: July 26, 2022
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11003069
    Abstract: The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: May 11, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hao Yu, Chi-Lun Lu, Chih-Tsung Shih, Ching-Wei Shen, Jeng-Horng Chen
  • Publication number: 20200264503
    Abstract: The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Inventors: Chia-Hao Yu, Chi-Lun Lu, Chih-Tsung Shih, Ching-Wei Shen, Jeng-Horng Chen
  • Patent number: 10642148
    Abstract: The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 5, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hao Yu, Chi-Lun Lu, Chih-Tsung Shih, Ching-Wei Shen, Jeng-Horng Chen
  • Publication number: 20180373138
    Abstract: The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 27, 2018
    Inventors: CHIA-HAO YU, CHI-LUN LU, CHIH-TSUNG SHIH, CHING-WEI SHEN, JENG-HORNG CHEN
  • Patent number: 10156784
    Abstract: A method includes directing an acoustically agitated fluid stream at a first surface of a substrate to cause the substrate to vibrate mechanically thereby dislodging contaminant particles on the substrate. The first surface of the substrate is opposite a second surface of the substrate. The second surface of the substrate includes a pattern. An amplitude of the acoustically agitated fluid stream is configured to produce an acoustic response along an entirety of the second surface.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Wei Shen, Chi-Lun Lu, Kuan-Wen Lin
  • Patent number: 10061191
    Abstract: The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 28, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hao Yu, Chi-Lun Lu, Chih-Tsung Shih, Ching-Wei Shen, Jeng-Horng Chen
  • Publication number: 20180157168
    Abstract: A method includes directing an acoustically agitated fluid stream at a first surface of a substrate to cause the substrate to vibrate mechanically thereby dislodging contaminant particles on the substrate. The first surface of the substrate is opposite a second surface of the substrate. The second surface of the substrate includes a pattern. An amplitude of the acoustically agitated fluid stream is configured to produce an acoustic response along an entirety of the second surface.
    Type: Application
    Filed: February 5, 2018
    Publication date: June 7, 2018
    Inventors: Ching-Wei Shen, Chi-Lun Lu, Kuan-Wen Lin
  • Patent number: 9885952
    Abstract: A system includes a bracket that is configured to support a photomask and is located at a first side of the photomask; an acoustic energy generator configured to generate acoustic energy, wherein the acoustic energy includes mechanical vibrations of a megasonic frequency and wavelength; and a fluid dispenser coupled to the acoustic energy generator such that the acoustic energy generated by the acoustic energy generator is received by the fluid dispenser to generate an acoustically agitated fluid stream directed at a second side of the photomask, wherein the first side of the photomask is opposite a second side of the photomask, and wherein the first side includes a pattern.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: February 6, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Wei Shen, Chi-Lun Lu, Kuan-Wen Lin
  • Publication number: 20170351169
    Abstract: The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
    Type: Application
    Filed: June 1, 2016
    Publication date: December 7, 2017
    Inventors: CHIA-HAO YU, CHI-LUN LU, CHIH-TSUNG SHIH, CHING-WEI SHEN, JENG-HORNG CHEN
  • Patent number: 9740094
    Abstract: A method of cleaning a photomask is disclosed. The method includes mixing a first chemical solution with a second chemical solution; and discharging the mixed chemical solution through an outlet of a nozzle to a surface of the photomask on which includes a ruthenium (Ru) layer, wherein the first chemical solution is configured to dislodge contaminant particles from the surface of the photomask and the second chemical solution is configured to provide an electron to the first chemical solution.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: August 22, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Wen Lin, Chi-Lun Lu, Ching-Wei Shen, Shu-Hsien Wu
  • Patent number: 9665000
    Abstract: The present disclosure provides a method of repairing a mask. The method includes inspecting a mask to identify a defect on the mask; performing a cleaning process to the mask using a non-thermal chemical solution to the mask; and repairing the mask to remove the defect from the mask. The non-thermal chemical solution is cooled by a cooling module to a working temperature below room temperature.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: May 30, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wei Shen, Chi-Lun Lu, Kuan-Wen Lin
  • Publication number: 20170139322
    Abstract: The present disclosure provides a method of repairing a mask. The method includes inspecting a mask to identify a defect on the mask; performing a cleaning process to the mask using a non-thermal chemical solution to the mask; and repairing the mask to remove the defect from the mask. The non-thermal chemical solution is cooled by a cooling module to a working temperature below room temperature.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 18, 2017
    Inventors: Ching-Wei Shen, Chi-Lun Lu, Kuan-Wen Lin
  • Publication number: 20170052443
    Abstract: A method of cleaning a photomask is disclosed. The method includes mixing a first chemical solution with a second chemical solution; and discharging the mixed chemical solution through an outlet of a nozzle to a surface of the photomask on which includes a ruthenium (Ru) layer, wherein the first chemical solution is configured to dislodge contaminant particles from the surface of the photomask and the second chemical solution is configured to provide an electron to the first chemical solution.
    Type: Application
    Filed: August 21, 2015
    Publication date: February 23, 2017
    Inventors: Kuan-Wen Lin, Chi-Lun Lu, Ching-Wei Shen, Shu-Hsien Wu
  • Publication number: 20170031241
    Abstract: A system includes a bracket that is configured to support a photomask and is located at a first side of the photomask; an acoustic energy generator configured to generate acoustic energy, wherein the acoustic energy includes mechanical vibrations of a megasonic frequency and wavelength; and a fluid dispenser coupled to the acoustic energy generator such that the acoustic energy generated by the acoustic energy generator is received by the fluid dispenser to generate an acoustically agitated fluid stream directed at a second side of the photomask, wherein the first side of the photomask is opposite a second side of the photomask, and wherein the first side includes a pattern.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 2, 2017
    Inventors: Ching-Wei Shen, Chi-Lun Lu, Kuan-Wen Lin
  • Patent number: 9418847
    Abstract: The present disclosure provides an apparatus in semiconductor manufacturing. The apparatus includes a mask, a pellicle frame attached to the mask, and a pellicle joined to the pellicle frame thereby forming a sealed enclosure bounded by the pellicle, the pellicle frame, and the mask. The apparatus further includes photo-catalyst particles introduced into the sealed enclosure before the sealed enclosure is formed. The photo-catalyst particles prevent haze formation within the enclosure during lithography exposure processes.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: August 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wei Shen, Kuan-Wen Lin, Chi-Lun Lu, Ting-Hao Hsu, Sheng-Chi Chin, Anthony Yen
  • Publication number: 20150212419
    Abstract: The present disclosure provides an apparatus in semiconductor manufacturing. The apparatus includes a mask, a pellicle frame attached to the mask, and a pellicle joined to the pellicle frame thereby forming a sealed enclosure bounded by the pellicle, the pellicle frame, and the mask. The apparatus further includes photo-catalyst particles introduced into the sealed enclosure before the sealed enclosure is formed. The photo-catalyst particles prevent haze formation within the enclosure during lithography exposure processes.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 30, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wei Shen, Kuan-Wen Lin, Chi-Lun Lu, Ting-Hao Hsu, Sheng-Chi Chin, Anthony Yen
  • Patent number: 8932958
    Abstract: A method of manufacturing is disclosed. An exemplary method includes providing a substrate and forming one or more layers over the substrate. The method further includes forming a surface layer over the one or more layers. The method further includes performing a patterning process on the surface layer thereby forming a pattern on the surface layer. The method further includes performing a cleaning process using a cleaning solution to clean a top surface of the substrate. The cleaning solution includes tetra methyl ammonium hydroxide (TMAH), hydrogen peroxide (H2O2) and water (H2O).
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: January 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Lun Lu, Kuan-Wen Lin, Ching-Wei Shen, Ting-Hao Hsu, Sheng-Chi Chin
  • Publication number: 20140051252
    Abstract: A method of manufacturing is disclosed. An exemplary method includes providing a substrate and forming one or more layers over the substrate. The method further includes forming a surface layer over the one or more layers. The method further includes performing a patterning process on the surface layer thereby forming a pattern on the surface layer. The method further includes performing a cleaning process using a cleaning solution to clean a top surface of the substrate. The cleaning solution includes tetra methyl ammonium hydroxide (TMAH), hydrogen peroxide (H2O2) and water (H2O).
    Type: Application
    Filed: October 29, 2013
    Publication date: February 20, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Lun Lu, Kuan-Wen Lin, Ching-Wei Shen, Ting-Hao Hsu, Sheng-Chi Chin