Patents by Inventor Ching-Wei Tsai

Ching-Wei Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11227917
    Abstract: A device includes a semiconductor substrate, a source feature and a drain feature over the semiconductor substrate, a stack of semiconductor layers interposed between the source feature and the drain feature, a gate portion, and an inner spacer of a dielectric material. The gate portion is between two vertically adjacent layers of the stack of semiconductor layers and between the source feature and the drain feature. Moreover, the gate portion has a first sidewall surface and a second sidewall surface opposing the first sidewall surface. The inner spacer is on the first sidewall surface and between the gate portion and the drain feature. The second sidewall surface is in direct contact with the source feature.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: January 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Ting Chung, Yu-Xuan Huang, Yi-Bo Liao, Ching-Wei Tsai, Kuan-Lun Cheng
  • Patent number: 11222958
    Abstract: A first fin structure is disposed over a substrate. The first fin structure contains a semiconductor material. A gate dielectric layer is disposed over upper and side surfaces of the first fin structure. A gate electrode layer is formed over the gate dielectric layer. A second fin structure is disposed over the substrate. The second fin structure is physically separated from the first fin structure and contains a ferroelectric material. The second fin structure is electrically coupled to the gate electrode layer.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hsing Hsu, Sai-Hooi Yeong, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: 11217484
    Abstract: A method for fabricating a semiconductor device having a dielectric footing region includes forming a plurality of fin elements extending from a substrate. In some embodiments, a dielectric layer is deposited over each of the plurality of fin elements. After depositing the dielectric layer, a dummy gate electrode is formed over the plurality of fin elements and over the dielectric layer. In some examples, and after forming the dummy gate electrode, a first spacer layer is formed on opposing sidewalls of the dummy gate electrode and over the dielectric layer. In various embodiments, the dielectric layer extends laterally beneath the first spacer layer on each of the opposing sidewalls of the dummy gate electrode to provide the dielectric footing region.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: January 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ting Chung, Ching-Wei Tsai, Kuan-Lun Cheng
  • Publication number: 20210407858
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a gate stack over a substrate. The substrate has a base and a multilayer structure over the base, and the gate stack wraps around the multilayer structure. The method includes partially removing the multilayer structure, which is not covered by the gate stack. The multilayer structure remaining under the gate stack forms a multilayer stack, and the multilayer stack includes a sacrificial layer and a channel layer over the sacrificial layer. The method includes partially removing the sacrificial layer to form a recess in the multilayer stack. The method includes forming an inner spacer layer in the recess and a bottom spacer over a sidewall of the channel layer. The method includes forming a source/drain structure over the bottom spacer. The bottom spacer separates the source/drain structure from the channel layer.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wei TSAI, Yu-Xuan HUANG, Kuan-Lun CHENG, Chih-Hao WANG, Min CAO, Jung-Hung CHANG, Lo-Heng CHANG, Pei-Hsun WANG, Kuo-Cheng CHIANG
  • Publication number: 20210408234
    Abstract: The present disclosure is directed to methods for the formation of high-voltage nano-sheet transistors and low-voltage gate-all-around transistors on a common substrate. The method includes forming a fin structure with first and second nano-sheet layers on the substrate. The method also includes forming a gate structure having a first dielectric and a first gate electrode on the fin structure and removing portions of the fin structure not covered by the gate structure. The method further includes partially etching exposed surfaces of the first nano-sheet layers to form recessed portions of the first nano-sheet layers in the fin structure and forming a spacer structure on the recessed portions. In addition, the method includes replacing the first gate electrode with a second dielectric and a second gate electrode, and forming an epitaxial structure abutting the fin structure.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 30, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Xuan Huang, Chia-En Huang, Ching-Wei Tsai, Kuan-Lun Cheng, Yih Wang
  • Patent number: 11211498
    Abstract: A device includes isolation regions extending into a semiconductor substrate, with a substrate strip between opposite portions of the isolation regions having a first width. A source/drain region has a portion overlapping the substrate strip, wherein an upper portion of the source/drain region has a second width greater than the first width. The upper portion of the source/drain region has substantially vertical sidewalls. A source/drain silicide region has inner sidewalls contacting the vertical sidewalls of the source/drain region.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Chiang, Ching-Wei Tsai, Chi-Wen Liu, Chih-Hao Wang, Ying-Keung Leung
  • Publication number: 20210399109
    Abstract: An IC structure includes a source epitaxial structure, a drain epitaxial structure, a first silicide region, a second silicide region, a source contact, a backside via rail, a drain contact, and a front-side interconnection structure. The first silicide region is on a front-side surface and a first sidewall of the source epitaxial structure. The second silicide region is on a front-side surface of the drain epitaxial structure. The source contact is in contact with the first silicide region and has a protrusion extending past a backside surface of the source epitaxial structure. The backside via rail is in contact with the protrusion of the source contact. The drain contact is in contact with the second silicide region. The front-side interconnection structure is on a front-side surface of the source contact and a front-side surface of the drain contact.
    Type: Application
    Filed: January 24, 2021
    Publication date: December 23, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huan-Chieh SU, Li-Zhen YU, Chun-Yuan CHEN, Cheng-Chi CHUANG, Shang-Wen CHANG, Yi-Hsun CHIU, Pei-Yu WANG, Ching-Wei TSAI, Chih-Hao WANG
  • Publication number: 20210375761
    Abstract: In an embodiment, a method of forming a structure includes forming a first transistor and a second transistor over a first substrate; forming a front-side interconnect structure over the first transistor and the second transistor; etching at least a backside of the first substrate to expose the first transistor and the second transistor; forming a first backside via electrically connected to the first transistor; forming a second backside via electrically connected to the second transistor; depositing a dielectric layer over the first backside via and the second backside via; forming a first conductive line in the dielectric layer, the first conductive line being a power rail electrically connected to the first transistor through the first backside via; and forming a second conductive line in the dielectric layer, the second conductive line being a signal line electrically connected to the second transistor through the second backside via.
    Type: Application
    Filed: December 18, 2020
    Publication date: December 2, 2021
    Inventors: Shang-Wen Chang, Yi-Hsun Chiu, Cheng-Chi Chuang, Ching-Wei Tsai, Wei-Cheng Lin, Shih-Wei Peng, Jiann-Tyng Tzeng
  • Publication number: 20210375861
    Abstract: Backside interconnect structures having reduced critical dimensions for semiconductor devices and methods of forming the same are disclosed. In an embodiment, a device includes a first transistor structure over a front-side of a substrate; a first backside interconnect structure over a backside of the substrate, the first backside interconnect structure including first conductive features having tapered sidewalls with widths that narrow in a direction away from the substrate; a power rail extending through the substrate, the power rail being electrically coupled to the first conductive features; and a first source/drain contact extending from the power rail to a first source/drain region of the first transistor structure.
    Type: Application
    Filed: September 21, 2020
    Publication date: December 2, 2021
    Inventors: Cheng-Ting Chung, Hou-Yu Chen, Ching-Wei Tsai
  • Publication number: 20210376076
    Abstract: In an embodiment, a device includes: a power rail contact; an isolation region on the power rail contact; a first dielectric fin on the isolation region; a second dielectric fin adjacent the isolation region and the power rail contact; a first source/drain region on the second dielectric fin; and a source/drain contact between the first source/drain region and the first dielectric fin, the source/drain contact contacting a top surface of the first source/drain region, a side surface of the first source/drain region, and a top surface of the power rail contact.
    Type: Application
    Filed: December 18, 2020
    Publication date: December 2, 2021
    Inventors: Huan-Chieh Su, Cheng-Chi Chuang, Shang-Wen Chang, Yi-Hsun Chiu, Pei-Yu Wang, Ching-Wei Tsai, Chih-Hao Wang
  • Publication number: 20210366906
    Abstract: A semiconductor structure includes a power rail, a first source/drain feature disposed over the power rail, a via connecting the power rail to the first source/drain feature; an isolation feature disposed over the first source/drain feature, and a second source/drain feature disposed over the isolation feature, where the first and the second source/drain features are of opposite conductivity types.
    Type: Application
    Filed: December 9, 2020
    Publication date: November 25, 2021
    Inventors: Yu-Xuan Huang, Chia-En Huang, Ching-Wei Tsai, Kuan-Lun Cheng
  • Publication number: 20210367050
    Abstract: A semiconductor device includes a first source/drain region and a second source/drain region disposed on opposite sides of a plurality of conductive layers. A dielectric layer overlies the first source/drain region, the second source/drain region, and the plurality of conductive layers. An electrical contact extends through the dielectric layer and the first source/drain region, where a first surface of the electrical contact is a surface of the electrical contact that is closest to the substrate, a first surface of the plurality of conductive layers is a surface of the plurality of conductive layers that is closest to the substrate, and the first surface of the electrical contact is closer to the substrate than the first surface of the plurality of conductive layers.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Ching-Wei Tsai, Yi-Bo Liao, Cheng-Ting Chung, Yu-Xuan Huang, Kuan-Lun Cheng
  • Publication number: 20210366716
    Abstract: A semiconductor device includes a substrate, a first semiconductor fin and a second semiconductor fin protruding from the substrate, an isolation feature disposed on the substrate and on sidewalls of the first and second semiconductor fins, a gate structure disposed on the isolation feature. The semiconductor device also includes a dielectric fin disposed on the isolation feature and sandwiched between the first and second semiconductor fins. A middle portion of the dielectric fin separates the gate structure into a first gate structure segment engaging the first semiconductor fin and a second gate structure segment engaging the second semiconductor fin.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 25, 2021
    Inventors: Pei-Yu Wang, Zhi-Chang Lin, Ching-Wei Tsai, Kuan-Lun Cheng
  • Publication number: 20210367053
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a first gate-all-around (GAA) transistor over a first region of a substrate and a second GAA transistor over a second region of the substrate. The first GAA transistor includes a plurality of first channel members stacked along a first direction vertical to a top surface of the substrate and a first gate structure over the plurality of first channel members. The second GAA transistor includes a plurality of second channel members stacked along a second direction parallel to the top surface of the substrate and a second gate structure over the plurality of second channel members. The plurality of first channel members and the plurality of second channel members comprise a semiconductor material having a first crystal plane and a second crystal plane different from the first crystal plane. The first direction is normal to the first crystal plane and the second direction is normal to the second crystal plane.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Cheng-Ting Chung, Ching-Wei Tsai, Kuan-Lun Cheng
  • Publication number: 20210358842
    Abstract: Methods of forming decoupling capacitors in interconnect structures formed on backsides of semiconductor devices and semiconductor devices including the same are disclosed. In an embodiment, a device includes a device layer including a first transistor; a first interconnect structure on a front-side of the device layer; a second interconnect structure on a backside of the device layer, the second interconnect structure including a first dielectric layer on the backside of the device layer; a contact extending through the first dielectric layer to a source/drain region of the first transistor; a first conductive layer including a first conductive line electrically connected to the source/drain region of the first transistor through the contact; and a second dielectric layer adjacent the first conductive line, the second dielectric layer including a material having a k-value greater than 7.0, a first decoupling capacitor including the first conductive line and the second dielectric layer.
    Type: Application
    Filed: August 27, 2020
    Publication date: November 18, 2021
    Inventors: Yu-Xuan Huang, Hou-Yu Chen, Ching-Wei Tsai, Kuan-Lun Cheng, Chung-Hui Chen
  • Patent number: 11171138
    Abstract: A semiconductor arrangement includes a well region, a transistor over the well region, a conductive line in conductive contact with a first source/drain region of the transistor and having a sidewall in conductive contact with a sidewall of the well region, and a liner layer disposed between the sidewall of the conductive line and the sidewall of the well region. A method includes forming a well region in a semiconductor layer. A first fin and a second fin are formed over the well region. A first spacer is formed on the first fin and a second spacer is formed on the second fin. A portion of the well region positioned between the first spacer and the second spacer is removed to define a trench. A liner layer is formed in the trench, and a conductive line is formed in the trench over the liner layer. The conductive line conductively contacts the well region.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: November 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Yu-Xuan Huang, Ching-Wei Tsai, Kuan-Lun Cheng
  • Publication number: 20210343853
    Abstract: A semiconductor device includes a semiconductor layer, a gate structure, a source/drain epitaxial structure, a backside dielectric cap, and an inner spacer. The gate structure wraps around the semiconductor layer. The source/drain epitaxial structure is adjacent the gate structure and electrically connected to the semiconductor layer. The backside dielectric cap is disposed under and in direct contact with the gate structure. The inner spacer is in direct contact with the gate structure and the backside dielectric cap.
    Type: Application
    Filed: August 18, 2020
    Publication date: November 4, 2021
    Inventors: Cheng-Ting Chung, Hou-Yu Chen, Ching-Wei Tsai
  • Publication number: 20210343600
    Abstract: Self-aligned gate cutting techniques for multigate devices are disclosed herein that provide multigate devices having asymmetric metal gate profiles and asymmetric source/drain feature profiles. An exemplary multigate device has a channel layer, a metal gate that wraps a portion of the channel layer, and source/drain features disposed over a substrate. The channel layer extends along a first direction between the source/drain features. A first dielectric fin and a second dielectric fin are disposed over the substrate and configured differently. The channel layer extends along a second direction between the first dielectric fin and the second dielectric fin. The metal gate is disposed between the channel layer and the second dielectric fin. In some embodiments, the first dielectric fin is disposed on a first isolation feature, and the second dielectric fin is disposed on a second isolation feature. The first isolation feature and the second isolation feature are configured differently.
    Type: Application
    Filed: February 11, 2021
    Publication date: November 4, 2021
    Inventors: Guan-Lin Chen, Kuo-Cheng Chiang, Chih-Hao Wang, Kuan-Lun Cheng, Ching-Wei Tsai, Shi Ning Ju, Jui-Chien Huang
  • Publication number: 20210335783
    Abstract: Methods of performing backside etching processes on source/drain regions and gate structures of semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first transistor structure; a first interconnect structure on a front-side of the first transistor structure; and a second interconnect structure on a backside of the first transistor structure, the second interconnect structure including a first dielectric layer on the backside of the first transistor structure; a contact extending through the first dielectric layer to a source/drain region of the first transistor structure; and first spacers along sidewalls of the contact between the contact and the first dielectric layer, sidewalls of the first spacers facing the first dielectric layer being aligned with sidewalls of the source/drain region of the first transistor structure.
    Type: Application
    Filed: July 30, 2020
    Publication date: October 28, 2021
    Inventors: Yi-Hsun Chiu, Ching-Wei Tsai, Yu-Xuan Huang, Cheng-Chi Chuang, Shang-Wen Chang
  • Publication number: 20210336063
    Abstract: In an embodiment, a device includes: a first interconnect structure including metallization patterns; a second interconnect structure including a power rail; a device layer between the first interconnect structure and the second interconnect structure, the device layer including a first transistor, the first transistor including an epitaxial source/drain region; and a conductive via extending through the device layer, the conductive via connecting the power rail to the metallization patterns, the conductive via contacting the epitaxial source/drain region.
    Type: Application
    Filed: August 20, 2020
    Publication date: October 28, 2021
    Inventors: Yi-Bo Liao, Yu-Xuan Huang, Pei-Yu Wang, Cheng-Ting Chung, Ching-Wei Tsai, Hou-Yu Chen