Patents by Inventor Ching-Wei Tsai

Ching-Wei Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11038061
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a fin structure over a substrate, a first dielectric layer adjacent to the fin structure, and a second dielectric layer covering a sidewall of the first dielectric layer. The first dielectric layer has a different etching selectivity than the second dielectric layer. A bottom portion of the second dielectric layer is lower than a bottom surface of the first dielectric layer. The semiconductor device structure also includes a source/drain feature over the fin structure and covering a sidewall of the second dielectric layer, nanostructures over the fin structure, and a gate stack wrapping around the nanostructures.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: June 15, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Chiang, Shi-Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11031418
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate having a first region and a second region; a first fin active region of a first semiconductor material disposed within the first region, oriented in a first direction, wherein the first fin active region has a <100> crystalline direction along the first direction; and a second fin active region of a second semiconductor material disposed within the second region and oriented in the first direction, wherein the second fin active region has a <110> crystalline direction along the first direction.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzer-Min Shen, Zhiqiang Wu, Chung-Cheng Wu, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: 11031395
    Abstract: The present disclosure describes a method for the formation of gate-all-around nano-sheet FETs with tunable performance. The method includes disposing a first and a second vertical structure with different widths over a substrate, where the first and the second vertical structures have a top portion comprising a multilayer nano-sheet stack with alternating first and second nano-sheet layers. The method also includes disposing a sacrificial gate structure over the top portion of the first and second vertical structures; depositing an isolation layer over the first and second vertical structures so that the isolation layer surrounds a sidewall of the sacrificial gate structure; etching the sacrificial gate structure to expose each multilayer nano-sheet stack from the first and second vertical structures; removing the second nano-sheet layers from each exposed multilayer nano-sheet stack to form suspended first nano-sheet layers; forming a metal gate structure to surround the suspended first nano-sheet layers.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tetsu Ohtou, Ching-Wei Tsai, Jiun-Jia Huang, Kuan-Lun Cheng, Chi-Hsing Hsu
  • Patent number: 11031298
    Abstract: In an embodiment, a method includes: forming a first recess and a second recess in a substrate; growing a first epitaxial material stack in the first recess, the first epitaxial material stack including alternating layers of a first semiconductor material and a second semiconductor material, the layers of the first epitaxial material stack being undoped; growing a second epitaxial material stack in the second recess, the second epitaxial material stack including alternating layers of the first semiconductor material and the second semiconductor material, a first subset of the second epitaxial material stack being undoped, a second subset of the second epitaxial material stack being doped; patterning the first epitaxial material stack and the second epitaxial material stack to respectively form first nanowires and second nanowires; and forming a first gate structure around the first nanowires and a second gate structure around the second nanowires.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Bo Liao, Kai-Chieh Yang, Ching-Wei Tsai, Kuan-Lun Cheng
  • Patent number: 11031292
    Abstract: A method of fabricating a device includes providing a first fin in a first device type region and a second fin in a second device type region. Each of the first and second fins include a plurality of semiconductor channel layers. A two-step recess of an STI region on opposing sides of each of the first and second fins is performed to expose a first number of semiconductor channel layers of the first fin and a second number of semiconductor channel layers of the second fin. A first gate structure is formed in the first device type region and a second gate structure is formed in the second device type region. The first gate structure is formed over the first fin having the first number of exposed semiconductor channel layers, and the second gate structure is formed over the second fin having the second number of exposed semiconductor channel layers.
    Type: Grant
    Filed: September 29, 2019
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shi Ning Ju, Kuo-Cheng Chiang, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11024650
    Abstract: A finFET device that includes a substrate and at least one semiconductor fin extending from the substrate. The fin may include a plurality of wide portions comprising a first semiconductor material and one or more narrow portions. The one or more narrow portions have a second width less than the first width of the wide portions. Each of the one or more narrow portions separates two of the plurality of wide portions from one another such that the plurality of wide portions and the one or more narrow portions are arranged alternatingly in a substantially vertical direction that is substantially perpendicular with a surface of the substrate. The fin may also include a channel layer covering sidewalls of the plurality of wide portions and a sidewall of the one or more narrow portions.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 1, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wang-Chun Huang, Kai-Chieh Yang, Ching-Wei Tsai, Kuan-Lun Chen, Chih-Hao Wang
  • Publication number: 20210159311
    Abstract: Semiconductor structures and method for manufacturing the same are provided. The method for manufacturing the semiconductor structure includes forming a first fin structure including first semiconductor material layers and second semiconductor material layers alternately stacked over a substrate and forming an isolation structure surrounding the first fin structure. The method for manufacturing the semiconductor structure also includes forming a first capping layer over the isolation structure and covering a top surface and sidewalls of the first fin structure and etching the isolation structure to form a first gap between the first capping layer and a top surface of the isolation structure. The method for manufacturing the semiconductor structure also includes forming a protection layer covering a sidewall of the first capping layer and filling in the first gap.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Wen-Ting LAN, Guan-Lin CHEN, Shi-Ning JU, Kuo-Cheng CHIANG, Chih-Hao WANG, Ching-Wei TSAI, Kuan-Lun CHENG
  • Patent number: 11001885
    Abstract: An apparatus suitable for single molecule sequencing. The apparatus includes at least one nanowell, a plurality of nucleic acid immobilization moieties, and a plurality of types of nucleic acid fragments. The nanowell has an observation zone. The nucleic acid immobilization moieties are disposed in or proximate to the observation zone. The nucleic acid fragments are immobilized to the nucleic acid immobilization moieties, respectively. At least one polymerase is disposed in the observation zone. A method of sequencing nucleic acid molecules using the above-mentioned apparatus is provided.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: May 11, 2021
    Assignee: Personal Genomics Taiwan, Inc.
    Inventors: Chung-Fan Chiou, Chao-Chi Pan, Ching-Wei Tsai, Bor-Huah Chen, Jian-Hao Ciou
  • Publication number: 20210134950
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first nanosheet field effect transistor (NSFET). The first NSFET includes a first nanosheet channel structure arranged over a substrate, a second nanosheet channel structure arranged directly over the first nanosheet channel structure, and a first gate electrode structure. The first and second nanosheet channel structures extend in parallel between first and second source/drain regions. The first gate electrode structure includes a first conductive ring and a second conductive ring that completely surround outer sidewalls of the first nanosheet channel structure and the second nanosheet channel structure, respectively, and that comprise a first material.
    Type: Application
    Filed: March 16, 2020
    Publication date: May 6, 2021
    Inventors: Chung-Wei Hsu, Hou-Yu Chen, Chih-Hao Wang, Ching-Wei Tsai, Kuo-Cheng Chiang, Kuan-Lun Cheng, Mao-Lin Huang, Jia-Ni Yu, Lung-Kun Chu
  • Publication number: 20210118882
    Abstract: The present disclosure provides an integrated circuit that includes a circuit formed on a semiconductor substrate; and a de-cap device formed on the semiconductor substrate and integrated with the circuit. The de-cap device includes a filed-effect transistor (FET) that further includes a source and a drain connected through contact features landing on the source and drain, respectively; a gate stack overlying a channel and interposed between the source and the drain; and a doped feature disposed underlying the channel and connecting to the source and the drain, wherein the doped feature is doped with a dopant of a same type of the source and the drain.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Inventors: Ching-Wei Tsai, Yu-Xuan Huang, Kuan-Lun Cheng, Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu
  • Patent number: 10971609
    Abstract: An integrated circuit (IC) structure with a nanowire power switch device and a method of forming the IC structure are disclosed. The method includes forming a first layer of metal lines of a first back end of line (BEOL) interconnect structure and forming a semiconductor nanowire structure on a first metal line of the first layer of metal lines. The BEOL interconnect structure is formed on a front end of line (FEOL) device layer having multiple active devices. The method further includes forming a first dielectric layer wrapped around the semiconductor nanowire structure, forming a metal layer on the dielectric layer and on a second metal line of the first layer of metal lines, and forming a second layer of metal lines of a second BEOL interconnect structure on the semiconductor nanowire structure. The first and second metal lines are electrically isolated from each other.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: April 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Li-Yang Chuang, Ching-Wei Tsai, Wang-Chun Huang, Kuan-Lun Cheng
  • Patent number: 10971406
    Abstract: A method for fabricating a semiconductor device includes providing a first wafer comprising a substrate and a first semiconductor material layer, bonding the first wafer to a second wafer, the second wafer comprising a sacrificial layer and a second semiconductor material layer, removing the sacrificial layer, patterning the bonded wafers to create a first structure and a second structure, removing the second semiconductor material from the first structure, forming a first type of transistor in the first semiconductor material of the first structure, and forming a second type of transistor in the second semiconductor material of the second structure.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: April 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Ching-Wei Tsai, Yeur-Luen Tu, Tung-I Lin, Wei-Li Chen
  • Publication number: 20210098302
    Abstract: A method of fabricating a device includes providing a first fin in a first device type region and a second fin in a second device type region. Each of the first and second fins include a plurality of semiconductor channel layers. A two-step recess of an STI region on opposing sides of each of the first and second fins is performed to expose a first number of semiconductor channel layers of the first fin and a second number of semiconductor channel layers of the second fin. A first gate structure is formed in the first device type region and a second gate structure is formed in the second device type region. The first gate structure is formed over the first fin having the first number of exposed semiconductor channel layers, and the second gate structure is formed over the second fin having the second number of exposed semiconductor channel layers.
    Type: Application
    Filed: September 29, 2019
    Publication date: April 1, 2021
    Inventors: Shi Ning JU, Kuo-Cheng CHIANG, Ching-Wei TSAI, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20210098609
    Abstract: Devices and structures that include a gate spacer having a gap or void are described along with methods of forming such devices and structures. In accordance with some embodiments, a structure includes a substrate, a gate stack over the substrate, a contact over the substrate, and a spacer disposed laterally between the gate stack and the contact. The spacer includes a first dielectric sidewall portion and a second dielectric sidewall portion. A void is disposed between the first dielectric sidewall portion and the second dielectric sidewall portion.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Kuo-Cheng Chiang, Ching-Wei Tsai, Chi-Wen Liu, Ying-Keung Leung
  • Publication number: 20210098450
    Abstract: The present disclosure describes a method to form a fin field effect transistor (finFET) and a nano-sheet transistor on a substrate. The method can include forming first and second vertical structures over a substrate, where each of the first and the second vertical structures can include a buffer region and a first channel layer formed over the buffer region. The method can further include disposing a masking layer over the first channel layer of the first and second vertical structures, removing a portion of the first vertical structure to form a first recess, forming a second channel layer in the first recess, forming a second recess in the second channel layer, and disposing an insulating layer in the second recess.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wang-Chun Huang, Chih-Hao Wang, Ching-Wei Tsai, Kuan-Lun Cheng
  • Publication number: 20210098459
    Abstract: A method includes etching a hybrid substrate to form a recess extending into the hybrid substrate. The hybrid substrate includes a first semiconductor layer having a first surface orientation, a dielectric layer over the first semiconductor layer, and a second semiconductor layer having a second surface orientation different from the first surface orientation. After the etching, a top surface of the first semiconductor layer is exposed to the recess. A spacer is formed on a sidewall of the recess. The spacer contacts a sidewall of the dielectric layer and a sidewall of the second semiconductor layer. An epitaxy is performed to grow an epitaxy semiconductor region from the first semiconductor layer. The spacer is removed.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Kuo-Cheng Chiang, Shi Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20210098625
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first gate stack and a second gate stack over a substrate. The substrate has a base, a first fin structure, and a second fin structure over the base, the second fin structure is wider than the first fin structure. The method includes partially removing the first fin structure, which is not covered by the first gate stack, and the second fin structure, which is not covered by the second gate stack. The method includes forming an inner spacer layer over the first fin structure, which is not covered by the first gate stack. The method includes forming a first stressor and a second stressor respectively over the inner spacer layer and the second fin structure, which is not covered by the second gate stack.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Wei TSAI, Yu-Xuan HUANG, Kuan-Lun CHENG, Chih-Hao WANG, Min CAO, Jung-Hung CHANG, Lo-Heng CHANG, Pei-Hsun WANG, Kuo-Cheng CHIANG
  • Publication number: 20210098618
    Abstract: A semiconductor device includes a substrate. The semiconductor device includes a dielectric layer disposed over a portion of the substrate. The semiconductor device includes a diffusion blocking layer disposed over the dielectric layer. The diffusion blocking layer and the dielectric layer have different material compositions. The semiconductor device includes a ferroelectric layer disposed over the diffusion blocking layer.
    Type: Application
    Filed: December 7, 2020
    Publication date: April 1, 2021
    Inventors: Chi-Hsing Hsu, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Sai-Hooi Yeong
  • Publication number: 20210098634
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises a fin substrate having a first dopant concentration; an anti-punch through (APT) layer disposed over the fin substrate, wherein the APT layer has a second dopant concentration that is greater than the first dopant concentration; a nanostructure including semiconductor layers disposed over the APT layer; a gate structure disposed over the nanostructure and wrapping each of the semiconductor layers, wherein the gate structure includes a gate dielectric and a gate electrode; a first epitaxial source/drain (S/D) feature and a second epitaxial S/D feature disposed over the APT layer, wherein the gate structure is disposed between the first epitaxial S/D feature and the second epitaxial S/D feature; and an isolation layer disposed between the APT layer and the fin substrate, wherein a material of the isolation layer is the same as a material of the gate dielectric.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Cheng-Ting Chung, Ching-Wei Tsai, Kuan-Lun Cheng
  • Publication number: 20210098583
    Abstract: A semiconductor device includes a first source/drain region and a second source/drain region disposed on opposite sides of a plurality of conductive layers. A dielectric layer overlies the first source/drain region, the second source/drain region, and the plurality of conductive layers. An electrical contact extends through the dielectric layer and the first source/drain region, where a first surface of the electrical contact is a surface of the electrical contact that is closest to the substrate, a first surface of the plurality of conductive layers is a surface of the plurality of conductive layers that is closest to the substrate, and the first surface of the electrical contact is closer to the substrate than the first surface of the plurality of conductive layers.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Inventors: Ching-Wei Tsai, Yi-Bo Liao, Cheng-Ting Chung, Yu-Xuan Huang, Kuan-Lun Cheng