Patents by Inventor Chishio Koshimizu

Chishio Koshimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8124539
    Abstract: A plasma processing apparatus having a focus ring, enables the efficiency of cooling of the focus ring to be greatly improved, while preventing an increase in cost thereof. The plasma processing apparatus is comprised of a susceptor which has an electrostatic chuck and the focus ring. A wafer W to be subjected to plasma processing is mounted on the electrostatic chuck. The focus ring has a dielectric material portion and a conductive material portion. The dielectric material portion forms a contact portion disposed in contact with the electrostatic chuck. The conductive material portion faces the electrostatic chuck with the dielectric material portion therebetween.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: February 28, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Shosuke Endoh, Noriyuki Iwabuchi, Shigeaki Kato, Tomoya Okubo, Jun Hirose, Koichi Nagakura, Chishio Koshimizu, Kazuki Denpoh
  • Publication number: 20120037597
    Abstract: There is provided a plasma processing apparatus capable of performing a uniform plasma process on a substrate by controlling a plasma distribution within a chamber to a desired state and uniformizing a plasma density within the chamber. The plasma processing apparatus includes an evacuable chamber 11 for performing a plasma process on a wafer W; a susceptor 12 for mounting the wafer W within the chamber 11; an upper electrode plate 30a facing the susceptor 12 with a processing space S; a high frequency power supply 20 for applying a high frequency power to one of the susceptor 12 and the upper electrode plate 30a to generate plasma within the processing space S; and an inner wall member facing the processing space S. Hollow cathodes 31a to 31c are formed at the upper electrode plate 30a connected with a DC power supply 37 for adjusting a sheath voltage.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 16, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio Koshimizu, Kazuki Denpoh
  • Publication number: 20120031560
    Abstract: A plasma processing apparatus includes: an evacuable chamber 11 for performing therein a plasma process on a substrate G; a susceptor 12 for mounting thereon the substrate G within the chamber 11; a dielectric window 30 provided to face the susceptor 12 via a processing space S; RF antennas 30a and 30b disposed in a space adjacent to the processing space S with the dielectric window 30; a gas supply unit 37 for supplying a processing gas into the processing space S; a high frequency power supply for applying a high frequency RFH to the RF antennas 30a and 30b, and generating plasma of the processing gas within the processing space S by an inductive coupling; and a protrusion 34 made of a dielectric material and provided on a bottom surface of the dielectric window 30 corresponding to an inter-position of the RF antennas 30a and 30b.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 9, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Chishio Koshimizu
  • Publication number: 20110272097
    Abstract: A plasma etching apparatus includes an upper electrode and a lower electrode, between which plasma of a process gas is generated to perform plasma etching on a wafer W. The apparatus further comprises a cooling ring disposed around the wafer, a correction ring disposed around the cooling ring, and a variable DC power supply directly connected to the correction ring, the DC voltage being preset to provide the correction ring with a negative bias, relative to ground potential, for attracting ions in the plasma and to increase temperature of the correction ring to compensate for a decrease in temperature of a space near the edge of the target substrate due to the cooling ring.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Yoshinobu Ooya, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Publication number: 20110259524
    Abstract: A plasma processing apparatus includes a process container configured to accommodate a target substrate and to be vacuum-exhausted. A first electrode and a second electrode are disposed opposite each other within the process container. The first electrode includes an outer portion and an inner portion both facing the second electrode such that the outer portion surrounds the inner portion. An RF power supply is configured to apply an RF power to the outer portion of the first electrode. A DC power supply is configured to apply a DC voltage to the inner portion of the first electrode. A process gas supply unit is configured to supply a process gas into the process container, wherein plasma of the process gas is generated between the first electrode and the second electrode.
    Type: Application
    Filed: July 6, 2011
    Publication date: October 27, 2011
    Inventors: Naoki MATSUMOTO, Chishio Koshimizu, Akira Koshiishi
  • Patent number: 8034213
    Abstract: A plasma processing apparatus includes a processing vessel capable of being vacuum evacuated; a first electrode disposed in the processing vessel in a state electrically floating via an insulating member or a space; a second electrode, arranged in the processing vessel to face and be in parallel to the first electrode with a specific interval, supporting a substrate to be processed; a processing gas supply unit for supplying a desired processing gas into a processing space surrounded by the first electrode, the second electrode and a sidewall of the processing vessel; and a first radio frequency power supply unit for applying a first radio frequency power to the second electrode to generate a plasma of the processing gas in the processing space. An electrostatic capacitance between the first electrode and the processing vessel is set such that a desired plasma density distribution is obtained for the generated plasma.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: October 11, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Naoki Matsumoto, Yoshinobu Hayakawa, Hidetoshi Hanaoka, Noriaki Kodama, Chishio Koshimizu, Manabu Iwata, Satoshi Tanaka
  • Publication number: 20110235056
    Abstract: A wear rate measurement method includes thermally coupling a focus ring having a top surface and a bottom surface with a reference piece having a bottom surface facing a susceptor and a top surface facing the focus ring; measuring a first optical path length of a low-coherence light beam that travels forward and backward within the focus ring by irradiating the low-coherence light beam to the focus ring orthogonally to the top surface and the bottom surface thereof; measuring a second optical path length of a low-coherence light beam that travels forward and backward within the reference piece by irradiating the low-coherence light beam to the reference piece orthogonally to the top surface and the bottom surface thereof; and calculating a wear rate of the focus ring based on a ratio between the first optical path length and the second optical path length.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tatsuo Matsudo, Chishio Koshimizu
  • Publication number: 20110235675
    Abstract: There is provided a substrate mounting table capable of accurately measuring a temperature of a wafer supported on the substrate mounting table without incurring contamination within a chamber and without forming a hole for measuring a temperature in the substrate mounting table. The substrate mounting table includes a mounting surface 90a configured to mount a wafer W thereon; a substrate lifting unit 80 configured to lift the wafer W by a lift pin 84 from the mounting surface 90a; and a light irradiating/receiving unit 87 configured to irradiate a measurement light beam 88 as a low-coherence light beam to the wafer W through an inside of the lift pin 84 serving as an optical path and receive reflected light beams from a front surface and a rear surface of the wafer W. The light irradiating/receiving unit 87 is fixed to a base plate 86 of the substrate lifting unit 80.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 29, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tatsuo Matsudo, Chishio Koshimizu
  • Publication number: 20110214815
    Abstract: An apparatus includes an upper electrode and a lower electrode for supporting a wafer disposed opposite each other within a process chamber. A first RF power supply configured to apply a first RF power having a relatively higher frequency, and a second RF power supply configured to apply a second RF power having a relatively lower frequency is connected to the lower electrode. A variable DC power supply is connected to the upper electrode. A process gas is supplied into the process chamber to generate plasma of the process gas so as to perform plasma etching.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 8, 2011
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Publication number: 20110211817
    Abstract: There is provided a method for heating a part within a processing chamber of a semiconductor manufacturing apparatus having a substrate in the processing chamber and performing a process on the substrate. The heating method includes generating heating lights which is generated by a heating light source provided outside the processing chamber and has a wavelength band capable of passing through a first part in the processing chamber and being absorbed into a second part in the processing chamber made of a material different from that of the first part, and heating the second part in the processing chamber by passing the heating lights through the first part in the processing chamber and irradiating the heating lights to the second part in the processing chamber.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 1, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun Yamawaku, Chishio Koshimizu, Tatsuo Matsudo
  • Publication number: 20110207245
    Abstract: A stage onto which is electrostatically attracted a substrate to be processed in a substrate processing apparatus, which enables the semiconductor device yield to be improved. A temperature measuring apparatus 200 measures a temperature of the substrate to be processed. A temperature control unit 400 carries out temperature adjustment on the substrate to be processed such as to become equal to a target temperature based on a preset parameter. A temperature control unit 400 controls the temperature of the substrate to be processed by controlling the temperature adjustment by the temperature control unit 400 based on a measured temperature measured by the temperature measuring apparatus 200.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 25, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio KOSHIMIZU, Tomohiro Suzuki
  • Publication number: 20110198315
    Abstract: A plasma processing method includes generating plasma in a processing chamber by supplying at least any of one or more electrodes provided in the processing chamber with a high-frequency power to process a substrate. The method includes applying the high-frequency power to at least any of the one or more electrodes, applying a direct-current voltage to at least any of the one or more electrodes, and previously adjusting the high-frequency power applied to the electrode at a timing when the apply of the direct-current voltage is started or terminated under a state in which the high-frequency power is applied to the electrode.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio KOSHIMIZU, Naoki Matsumoto
  • Patent number: 7993489
    Abstract: A plasma processing apparatus includes a process container configured to accommodate a target substrate and to be vacuum-exhausted. A first electrode and a second electrode are disposed opposite each other within the process container. The first electrode includes an outer portion and an inner portion both facing the second electrode such that the outer portion surrounds the inner portion. An RF power supply is configured to apply an RF power to the outer portion of the first electrode. A DC power supply is configured to apply a DC voltage to the inner portion of the first electrode. A process gas supply unit is configured to supply a process gas into the process container, wherein plasma of the process gas is generated between the first electrode and the second electrode.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: August 9, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Naoki Matsumoto, Chishio Koshimizu, Akira Koshiishi
  • Patent number: 7988816
    Abstract: A plasma etching apparatus includes an upper electrode and a lower electrode, between which plasma of a process gas is generated to perform plasma etching on a wafer W. The apparatus further comprises a cooling ring disposed around the wafer, a correction ring disposed around the cooling ring, and a variable DC power supply directly connected to the correction ring, the DC voltage being preset to provide the correction ring with a negative bias, relative to ground potential, for attracting ions in the plasma and to increase temperature of the correction ring to compensate for a decrease in temperature of a space near the edge of the target substrate due to the cooling ring.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 2, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Yoshinobu Ooya, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Patent number: 7956310
    Abstract: A stage onto which is electrostatically attracted a substrate to be processed in a substrate processing apparatus, which enables the semiconductor device yield to be improved. A temperature measuring apparatus 200 measures a temperature of the substrate to be processed. A temperature control unit 400 carries out temperature adjustment on the substrate to be processed such as to become equal to a target temperature based on a preset parameter. A temperature control unit 400 controls the temperature of the substrate to be processed by controlling the temperature adjustment by the temperature control unit 400 based on a measured temperature measured by the temperature measuring apparatus 200.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 7, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Chishio Koshimizu, Tomohiro Suzuki
  • Patent number: 7952717
    Abstract: A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes a controller that stores, as initial peak position data, positions of interference peaks respectively measured in advance by irradiating the first to the nth measuring beam onto the first to the nth measurement point of the temperature measurement object, and compares the initial peak position data to positions of interference peaks respectively measured during a temperature measurement to thereby estimate a temperature at each of the first to the nth measurement point.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: May 31, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Jun Abe, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 7951262
    Abstract: An apparatus includes an upper electrode and a lower electrode for supporting a wafer disposed opposite each other within a process chamber. A first RF power supply configured to apply a first RF power having a relatively higher frequency, and a second RF power supply configured to apply a second RF power having a relatively lower frequency is connected to the lower electrode. A variable DC power supply is connected to the upper electrode. A process gas is supplied into the process chamber to generate plasma of the process gas so as to perform plasma etching.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: May 31, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Publication number: 20110114599
    Abstract: A plasma processing apparatus includes a plurality of radio-frequency power supplies for supplying radio-frequency powers having frequencies different from each other, a common feeding line for superposing radio-frequency powers supplied respectively from the plurality of radio-frequency power supplies and feeding the superposed radio-frequency power to a same radio-frequency electrode, a radio-frequency power extracting device for extracting radio-frequency powers having predetermined frequencies from radio-frequency powers fed via the feeding line, and a radio-frequency voltage detector for measuring voltages of the radio-frequency powers having the predetermined frequencies extracted by the radio-frequency power extracting device.
    Type: Application
    Filed: January 26, 2011
    Publication date: May 19, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio KOSHIMIZU, Naoki Matsumoto
  • Publication number: 20110104902
    Abstract: A plasma processing apparatus includes a processing chamber including a dielectric window; a coil shaped RF antenna provided outside the dielectric window; a substrate supporting unit, provided in the processing chamber, for mounting thereon a target substrate to be processed; a processing gas supply unit for supplying a desired processing gas to the processing chamber to perform a desired plasma process on the target substrate; and an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the processing chamber. The apparatus further includes a floating coil electrically floated and arranged at a position outside the processing chamber where the floating coil is to be coupled with the RF antenna by an electromagnetic induction; and a capacitor provided in a loop of the floating coil.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 5, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Chishio Koshimizu, Kazuki Denpoh, Jun Yamawaku, Masashi Saito
  • Publication number: 20110094997
    Abstract: A plasma processing apparatus includes: an evacuable processing chamber including a dielectric window; a substrate supporting unit, provided in the processing chamber, for mounting thereon a target substrate; a processing gas supply unit for supplying a desired processing gas to the processing chamber to perform a plasma process on the target substrate; a first RF antenna, provided on the dielectric window, for generating a plasma by an inductive coupling in the processing chamber; and a first RF power supply unit for supplying an RF power to the first RF antenna. The first RF antenna includes a primary coil provided on or above the dielectric window and electrically connected to the first RF power supply unit; and a secondary coil provided such that the coils are coupled with each other by an electromagnetic induction therebetween while being arranged closer to a bottom surface of the dielectric window than the primary coil.
    Type: Application
    Filed: October 27, 2010
    Publication date: April 28, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Masashi Saito, Kazuki Denpoh, Chishio Koshimizu, Jun Yamawaku