Patents by Inventor Chishio Koshimizu

Chishio Koshimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110094997
    Abstract: A plasma processing apparatus includes: an evacuable processing chamber including a dielectric window; a substrate supporting unit, provided in the processing chamber, for mounting thereon a target substrate; a processing gas supply unit for supplying a desired processing gas to the processing chamber to perform a plasma process on the target substrate; a first RF antenna, provided on the dielectric window, for generating a plasma by an inductive coupling in the processing chamber; and a first RF power supply unit for supplying an RF power to the first RF antenna. The first RF antenna includes a primary coil provided on or above the dielectric window and electrically connected to the first RF power supply unit; and a secondary coil provided such that the coils are coupled with each other by an electromagnetic induction therebetween while being arranged closer to a bottom surface of the dielectric window than the primary coil.
    Type: Application
    Filed: October 27, 2010
    Publication date: April 28, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Masashi Saito, Kazuki Denpoh, Chishio Koshimizu, Jun Yamawaku
  • Publication number: 20110094996
    Abstract: A plasma processing apparatus includes a processing chamber including a dielectric window; a coil-shaped RF antenna, provided outside the dielectric window; a substrate supporting unit provided in the processing chamber; a processing gas supply unit; an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the processing chamber, the RF power having an appropriate frequency for RF discharge of the processing gas; a correction coil, provided at a position outside the processing chamber where the correction coil is to be coupled with the RF antenna by an electromagnetic induction, for controlling a plasma density distribution on the substrate in the processing chamber; a switching device provided in a loop of the correction coil; and a switching control unit for on-off controlling the switching device at a desired duty ratio by pulse width modulation.
    Type: Application
    Filed: October 27, 2010
    Publication date: April 28, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei YAMAZAWA, Chishio KOSHIMIZU, Masashi SAITO, Kazuki DENPOH, Jun YAMAWAKU
  • Publication number: 20110094995
    Abstract: A plasma processing apparatus includes: a processing chamber including a dielectric window; a coil-shaped RF antenna, provided outside the dielectric window; a substrate supporting unit, provided in the chamber, for mounting thereon a target substrate; a processing gas supply unit for supplying a processing gas to the chamber; and an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the chamber. The apparatus further includes a correction coil, provided at a position outside the chamber where the correction coil is to be coupled with the RF antenna by an electromagnetic induction, for controlling a plasma density distribution in the chamber; and an antenna-coil distance control unit for controlling a distance between the RF antenna and the correction coil while supporting the correction coil substantially in parallel with the RF antenna.
    Type: Application
    Filed: October 27, 2010
    Publication date: April 28, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Chishio Koshimizu, Masashi Saito, Kazuki Denpoh, Jun Yamawaku, Hachishiro Iizuka
  • Publication number: 20110000883
    Abstract: A plasma processing apparatus having a focus ring, enables the efficiency of cooling of the focus ring to be greatly improved, while preventing an increase in cost thereof. The plasma processing apparatus is comprised of a susceptor which has an electrostatic chuck and the focus ring. A wafer W to be subjected to plasma processing is mounted on the electrostatic chuck. The focus ring has a dielectric material portion and a conductive material portion. The dielectric material portion forms a contact portion disposed in contact with the electrostatic chuck. The conductive material portion faces the electrostatic chuck with the dielectric material portion therebetween.
    Type: Application
    Filed: August 4, 2010
    Publication date: January 6, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shosuke Endoh, Noriyuki Iwabuchi, Shigeaki Kato, Tomoya Okubo, Jun Hirose, Koichi Nagakura, Chishio Koshimizu, Kazuki Denpoh
  • Publication number: 20100304572
    Abstract: An optimum application voltage for reducing deposits on a peripheral portion of a substrate as well as improving a process result in balance is effectively found without changing a height of a focus ring. A plasma processing apparatus includes a focus ring which includes a dielectric ring provided so as to surround a substrate mounting portion of a mounting table and a conductive ring provided on the dielectric ring; a voltage sensor configured to detect a floating voltage of the conductive ring; a DC power supply configured to apply a DC voltage to the conductive ring. An optimum voltage to be applied to the conductive ring is obtained based on a floating voltage actually detected from the conductive ring, and the optimum application voltage is adjusted based on a variation in the actually detected floating voltage for each plasma process.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 2, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Chishio Koshimizu
  • Patent number: 7829463
    Abstract: A plasma processing method performs a desired plasma process on substrates by using a plasma generated in a processing space. A first and a second electrode are disposed in parallel in a processing vessel that is grounded, the substrate is supported on the second electrode to face the first electrode, the processing vessel is vacuum evacuated, a desired processing gas is supplied into the processing space formed between the first electrode, the second electrode and a sidewall of the processing vessel, and a first radio frequency power is supplied to the second electrode. The first electrode is connected to the processing vessel via an insulator or a space, and is electrically coupled to a ground potential via a capacitance varying unit whose electrostatic capacitance is varied based on a process condition of the plasma process performed on the substrate.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 9, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Naoki Matsumoto, Chishio Koshimizu, Manabu Iwata, Satoshi Tanaka
  • Publication number: 20100243620
    Abstract: A plasma processing apparatus performs plasma processing on a processing target in a processing chamber. The apparatus includes: an object to be heated provided near a periphery of a mounting table disposed in the processing chamber; and a heating electrode disposed adjacent to the periphery of the mounting table, for heating the object to be heated. A first coil having a first path and a second coil having a second path are wired close to each other in the heating electrode along the periphery of the mounting table.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 30, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun Yamawaku, Chishio Koshimizu
  • Publication number: 20100243162
    Abstract: A uniformity of plasma density in a target object surface and plasma processing characteristics can be improved. A plasma processing apparatus 10 includes: a processing chamber 100 in which a plasma process is performed on a wafer W; a first high frequency power supply 140 configured to output a high frequency power; a high frequency antenna 120 including an outer coil, an inner coil and n (n is an integer equal to or greater than 1) number of intermediate coil(s) that are concentrically wound about a central axis outside the processing chamber 100; and a dielectric window 105 provided at a part of a wall of the processing chamber 100 and configured to introduce electromagnetic field energy generated from the high frequency antenna 120 into the processing chamber 100.
    Type: Application
    Filed: March 30, 2010
    Publication date: September 30, 2010
    Applicant: Tokyo Electron Limited
    Inventor: Chishio Koshimizu
  • Publication number: 20100243606
    Abstract: A plasma processing apparatus includes a vacuum evacuable processing chamber; a lower electrode for mounting a target substrate in the processing chamber; a focus ring attached to the lower electrode to cover at least a portion of a peripheral portion of the lower electrode; an upper electrode disposed to face the lower electrode in parallel in the processing chamber; a processing gas supply unit for supplying a processing gas to a processing space; and a radio frequency (RF) power supply for outputting an RF power. Further, the plasma processing apparatus includes a plasma generating RF power supply section for supplying the RF power to a first load for generating a plasma of the processing gas; and a focus ring heating RF power supply section for supplying the RF power to a second load for heating the focus ring.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 30, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio KOSHIMIZU, Yohei Yamazawa
  • Publication number: 20100243608
    Abstract: There is provided a plasma processing apparatus capable of varying an AC ratio without installing a largely scaled-up movable unit. An etching apparatus 10, which performs a plasma process on a wafer W within a processing chamber, includes a control member which is installed such that at least a part of the control member is in contact with a plasma region within the processing chamber, and an impedance control circuit 210 which is connected with the control member and adjusts a ground capacitance of the plasma region by controlling an electrical connection state between the control member and a ground plane.
    Type: Application
    Filed: March 31, 2010
    Publication date: September 30, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Chishio Koshimizu
  • Publication number: 20100213171
    Abstract: There are provided a method of heating a focus ring and a plasma etching apparatus, capable of simplifying a structure of a heating mechanism without a dummy substrate. The plasma etching apparatus includes a vacuum processing chamber; a lower electrode serving as a mounting table for mounting a substrate thereon; an upper electrode provided to face the lower electrode; a gas supply unit for supplying a processing gas; a high frequency power supply for supplying a high frequency power to the lower electrode to generate a plasma of the processing gas; and a focus ring provided on the lower electrode to surround a periphery of the substrate. In the plasma etching apparatus, the focus ring is heated by irradiating a heating light thereto from a light source provided outside the vacuum processing chamber.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 26, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio Koshimizu, Jun Yamawaku, Tatsuo Matsudo, Masashi Saito
  • Publication number: 20100206482
    Abstract: A plasma processing apparatus includes a temperature measuring unit; airtightly sealed temperature measuring windows provided in a mounting table, for optically communicating to transmit a measurement beam through a top surface and a bottom surface of the mounting table; and one or more connection members for connecting the mounting table and a base plate, which is provided in a space between the mounting table and the base plate. In the plasma processing apparatus, a space above the mounting table is set to be maintained under a vacuum atmosphere, and a space between the mounting table and the base plate is set to be maintained under a normal pressure atmosphere, and each collimator is fixed to the base plate at a position corresponding to each temperature measuring window, thereby measuring a temperature of the substrate via the temperature measuring windows by the temperature measuring unit.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 19, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tatsuo MATSUDO, Chishio Koshimizu, Jun Abe
  • Patent number: 7740737
    Abstract: An apparatus includes an upper electrode and a lower electrode for supporting a wafer disposed opposite each other within a process chamber. A first RF power supply configured to apply a first RF power having a relatively higher frequency is connected to the upper electrode. A second RF power supply configured to apply a second RF power having a relatively lower frequency is connected to the lower electrode. A variable DC power supply is connected to the upper electrode. A process gas is supplied into the process chamber while any one of application voltage, application current, and application power from the variable DC power supply to the upper electrode is controlled, to generate plasma of the process gas so as to perform plasma etching.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: June 22, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Manabu Iwata, Daisuke Yano, Yohei Yamazawa
  • Publication number: 20100126668
    Abstract: An apparatus includes an upper electrode and a lower electrode for supporting a wafer disposed opposite each other within a process chamber. A first RF power supply configured to apply a first RF power having a relatively higher frequency is connected to the upper electrode. A second RF power supply configured to apply a second RF power having a relatively lower frequency is connected to the lower electrode. A variable DC power supply is connected to the upper electrode. A process gas is supplied into the process chamber while any one of application voltage, application current, and application power from the variable DC power supply to the upper electrode is controlled, to generate plasma of the process gas so as to perform plasma etching.
    Type: Application
    Filed: January 29, 2010
    Publication date: May 27, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Akira KOSHIISHI, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Manabu Iwata, Daisuke Yano, Yohei Yamazawa
  • Patent number: 7692916
    Abstract: A plasma processing apparatus includes a process container configured to accommodate a target substrate and to be vacuum-exhausted. A first electrode and a second electrode are disposed opposite each other within the process container. A process gas supply unit is configured to supply a process gas into the process container. An RF power supply is configured to apply an RF power to the first electrode or second electrode to generate plasma of the process gas. A DC power supply is configured to apply a DC voltage to the first electrode or second electrode. A control section is configured to control the RF power supply and the DC power supply such that the DC power supply causes the DC voltage applied therefrom to reach a voltage set value, when or after the RF power supply starts applying the RF power.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 6, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Naoki Matsumoto, Hideaki Tanaka, Hisashi Fujiwara, Chishio Koshimizu, Fumiaki Koiwa, Toshiyuki Kobayashi, Youichi Nakayama, Hiroshi Nakamura
  • Publication number: 20100012274
    Abstract: A focus ring is placed on a substrate mounting table for mounting a target substrate thereon to surround the target substrate. The focus ring converges plasma on the target substrate when the target substrate is subjected to plasma processing. The focus ring is configured to create a temperature difference in its radial direction and over its full circumference during the plasma-processing of the target substrate. The focus ring also includes a radial outer region as a higher temperature region and a radial inner region as a lower temperature region. A groove is formed between the radial outer region and the radial inner region to extend over the full circumference of the focus ring.
    Type: Application
    Filed: July 16, 2009
    Publication date: January 21, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masaaki Miyagawa, Katsuhiko Ono, Chishio Koshimizu, Kazuki Denpoh, Tatsuo Matsudo, Yasuhiro Hamada
  • Publication number: 20100000970
    Abstract: In a method of controlling the temperature of an in-chamber member used in a plasma processing apparatus that processes a target substrate with plasma, a plurality of power-feeding portions is provided in the in-chamber member and the in-chamber member is heated by supplying electric power thereto through the power-feeding portions. A resistance value or resistivity of the in-chamber member is measured and the electric power is controlled based on the temperature of the in-chamber member estimated from the resistance value or resistivity. The in-chamber member includes one or more annular members arranged around the target substrate. The in-chamber member is a member making contact with plasma within a chamber and existing near the target substrate.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 7, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio Koshimizu, Manabu Iwata, Tatsuo Matsudo
  • Publication number: 20090255800
    Abstract: A plasma processing apparatus includes a vacuum evacuable processing chamber; a first electrode for supporting a substrate to be processed in the processing chamber; a processing gas supply unit for supplying a processing gas into a processing space; a plasma excitation unit for generating a plasma by exciting the processing gas in the processing chamber; a first radio frequency power supply unit for supplying a first radio frequency power to the first electrode to attract ions in the plasma to the substrate; and a first radio frequency power amplitude modulation unit for modulating an amplitude of the first radio frequency power at a predetermined interval. The plasma processing apparatus further includes a first radio frequency power frequency modulation unit for modulating a frequency of the first radio frequency power in substantially synchronously with the amplitude modulation of the first radio frequency power.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 15, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Chishio Koshimizu
  • Publication number: 20090242127
    Abstract: A plasma etching apparatus includes a processing vessel; a lower electrode on which a target substrate is mounted in the processing vessel; an upper electrode disposed in the processing vessel to face the lower electrode in parallel; a processing gas supply unit configured to supply a processing gas into a processing space between the upper and the lower electrode; a first radio frequency power supply unit configured to apply, to the lower electrode, a first radio frequency power for generating plasma of the processing gas; a focus ring covering a top surface peripheral portion of the lower electrode protruding toward a radial outside of the substrate; a DC power supply configured to output a variable DC voltage; and a DC voltage supply network that connects the DC power supply to either one of the focus ring and the upper electrode or both depending on processing conditions of plasma etching.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio KOSHIMIZU, Manabu IWATA, Masanobu HONDA, Hiroyuki NAKAYAMA
  • Publication number: 20090242135
    Abstract: A plasma processing apparatus includes: a vacuum-evacuable processing chamber; a lower central electrode; a lower peripheral electrode surrounding the lower central electrode in an annular shape; an upper electrode provided to face the lower central electrode and the lower peripheral electrode; a processing gas supply unit for supplying a processing gas into the processing chamber; an RF power supply for outputting an RF power for generating a plasma; and a power feed conductor connected to a rear surface of the lower peripheral electrode to supply the RF power to the lower peripheral electrode. The apparatus further includes a variable capacitance coupling unit for electrically connecting the lower central electrode with at least one of the power feed conductor and the lower peripheral electrode by capacitance coupling with a variable impedance in order to supply a part of the RF power from the RF power supply to the lower central electrode.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio KOSHIMIZU, Shinji Himori