Patents by Inventor Chit Hwei

Chit Hwei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040072406
    Abstract: A structure and method of fabrication of a capacitor and other devices by providing a semiconductor structure and providing a top insulating layer and conductive features over the semiconductor structure; forming a first conductive layer over the top insulating layer; patterning the first conductive layer to form at least a capacitor bottom plate and a first portion of the first conductive layer; forming a capacitor dielectric layer over the top insulating layer and the capacitor bottom plate and the first portion of the first conductive layer; forming a second conductive layer over the capacitor dielectric layer; and patterning the second conductive layer to form at least a top plate over the bottom plate and a first section of the second conductive layer on the capacitor dielectric layer. The embodiment can further comprise conductive features in the top insulating layer that can underlie the bottom plate, the first portion or/and the first section.
    Type: Application
    Filed: October 10, 2002
    Publication date: April 15, 2004
    Inventors: Chit Hwei Ng, Chaw Sing Ho
  • Patent number: 6716693
    Abstract: An improved new process for fabricating multilevel interconnected vertical channels and horizontal channels or tunnels. The method has broad applications in semiconductors, for copper interconnects and inductors, as well as, in the field of bio-sensors for mini- or micro-columns in gas or liquid separation, gas/liquid chromatography, and in capillary separation techniques. In addition, special techniques are described to deposit by atomic layer deposition, ALD, a copper barrier layer and seed layer for electroless copper plating, filling trench and channel or tunnel openings in a type of damascene process, to form copper interconnects and inductors.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: April 6, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Sanford Chu, Chit Hwei Ng, Yelehanka Ramachandramurthy Pradeep, Jia Zhen Zheng
  • Patent number: 6709918
    Abstract: A method for making concurrently metal-insulator-metal (MIM) capacitors and a metal resistors in a Cu damascene back-end-of-line process is achieved. The method forms a Cu capacitor bottom metal plate using a dual-damascene process. A Si3N4 or SiC is deposited to form a capacitor dielectric layer on the Cu bottom plate. A metal layer having an upper etch-stop layer is deposited and patterned to form concurrently capacitor top plates and metal resistors. The patterning is terminated in the capacitor dielectric layer to prevent Cu particle contamination. An insulating layer is deposited and via holes are etched to the capacitor top plates and the metal resistors using the upper etch-stop layer to prevent overetching and damage. The method provides a MIM capacitor using only one additional photoresist mask while improving process yield.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: March 23, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chit Hwei Ng, Jian Xun Li, Kok Wai Chew, Tjin Tjin Tjoa, Chaw Sing Ho, Shao Fu Sanford Chu
  • Publication number: 20040038542
    Abstract: A first method of reducing semiconductor device substrate effects comprising the following steps. O+ or O2+ are selectively implanted into a silicon substrate to form a silicon-damaged silicon oxide region. One or more devices are formed over the silicon substrate proximate the silicon-damaged silicon oxide region within at least one upper dielectric layer. A passivation layer is formed over the at least one upper dielectric layer. The passivation layer and the at least one upper dielectric layer are patterned to form a trench exposing a portion of the silicon substrate over the silicon-damaged silicon oxide region. The silicon-damaged silicon oxide region is selectively etched to form a channel continuous and contiguous with the trench whereby the channel reduces the substrate effects of the one or more semiconductor devices.
    Type: Application
    Filed: August 22, 2002
    Publication date: February 26, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Sanford Chu, Chit Hwei Ng, Purakh Verma, Jia Zhen Zheng, Johnny Chew, Choon Beng Sia
  • Patent number: 6689643
    Abstract: There is a need for adjustable capacitors for use in LC or RC matching networks in micro-circuits. This has been achieved by forming a set of individual capacitors that share a common bottom electrode. The areas of the top electrodes of these individual capacitors are chosen to be in an integral ratio to one another so that they can be combined to produce any capacitance within a range of unit values. For example, if four capacitors whose areas are in the ratio of 5:2:1:1, are provided, then any capacitance in a range of from 1 to 9 can be generated, depending on how the top electrodes are connected. Such connections can be hard-wired within the final wiring level to provide a factory adjustable capacitor or they can be connected through field programmable devices to produce a field programmable capacitor. A process for manufacturing the device is also described.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: February 10, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wei Hua Cheng, Daniel Yen, Chit Hwei Ng, Marvin Liao
  • Publication number: 20040023506
    Abstract: In accordance with the objectives of the invention a new method is provided for the creation of layers of gate oxide having an unequal thickness. Active surface regions are defined over the surface of a substrate, a thick layer of gate oxide is grown over the active surface. A selective etch is applied to the thick layer of gate oxide, selectively reducing the thickness of the thick layer of gate oxide to the required thickness of a thin layer of gate oxide. The layer of thick gate oxide is blocked from exposure. N2 atoms are implanted into the exposed surface of the thin layer of oxide, rapid thermal processing is performed and the blocking mask is removed from the surface of the thick layer of gate oxide. A high concentration of nitride has now been provided in the thin layer of gate oxide.
    Type: Application
    Filed: July 30, 2002
    Publication date: February 5, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yelehanka Ramachandramurthy Pradeep, Sanford Chu, Chit Hwei Ng, Jia Zhen Zheng, Purakh Verma
  • Publication number: 20040004054
    Abstract: A new method of provided for forming in one plane layers of semiconductor material having both high and low dielectric constants. Layers, having selected and preferably non-identical parameters of dielectric constants, are successively deposited interspersed with layers of etch stop material. The layers can be etched, creating openings there-through that can be filled with a a layer of choice.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 8, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yelehanka Ramachandramurthy Pradeep, Sanford Chu, Chit Hwei Ng, Jia Zhen Zheng, Purakh Verma
  • Patent number: 6670237
    Abstract: A method for forming a capacitor in a semiconductor device. An embodiment simultaneously forms a MIM capacitor and a dual damascene interconnect using common process steps. An embodiment comprises: forming a capacitor bottom plate and a first metal line over the semiconductor structure. We form a second dielectric layer over the capacitor bottom plate, the first metal line, and a first dielectric layer. Next, we form a top plate opening in the second dielectric layer to at least partially expose the capacitor bottom plate. A capacitor dielectric layer is formed over the capacitor bottom plate and the second dielectric layer. A capacitor top plate is formed in the top plate opening. Subsequently, we form a via opening through at least the second dielectric layer, the capacitor dielectric layer over the first metal line to expose a portion of the first metal line. Next, we fill the via opening with a second metal layer to form a via plug.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: December 30, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wye Boon Loh, Chit Hwei Ng
  • Publication number: 20030211731
    Abstract: A new method is provided for the creation of a MIM capacitor. The invention starts with a semiconductor surface. A first copper damascene process is applied for the creation of a first and a second damascene copper interconnect plug through a first layer of dielectric deposited over the surface of the substrate. A first layer of tantalum is deposited (for the bottom plate of a capacitor) over which is deposited a first layer of silicon nitride (for capacitor dielectric) over which is deposited a second layer of tantalum (for the top plate of a capacitor). A one time etch of the three deposited layers forms a MIM capacitor. A second layer of silicon nitride is deposited followed by the deposition of a second layer of dielectric. Third and fourth dual damascene openings are created through the second layer of dielectric and the second layer of silicon nitride. The third dual damascene opening aligns with MIM capacitor. The fourth dual damascene opening aligns with the second dual damascene plug.
    Type: Application
    Filed: May 7, 2002
    Publication date: November 13, 2003
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Shao Kai, Ng Chit Hwei, Sanford Chu
  • Patent number: 6645818
    Abstract: A new method for forming a dual-metal gate CMOS transistors is described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A nitride layer is deposited overlying a gate dielectric layer and patterned to form a first dummy gate in each of the active areas. First ions are implanted to form source/drain regions in each of the active areas not covered by the first dummy gates. The first dummy gates are isotropically etched to form second dummy gates thinner than the first dummy gates. Second ions are implanted to form lightly doped source/drain regions in each of the active areas not covered by the second dummy gates. Dielectric spacers are formed on sidewalls of the second dummy gates and the source/drain regions are silicided. The second dummy gates and spacers are removed. A first metal layer is deposited overlying the substrate and patterned to form a first metal gate in one of the NMOS and PMOS active areas.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: November 11, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ho-Chaw Sing, Ng Chit Hwei
  • Patent number: 6645810
    Abstract: In one embodiment, the present invention recites forming a number of first openings in a first substrate. The present embodiment then recites forming a copper region within each first openings during a damascene process, wherein each copper region has a top surface. The present embodiment then disposes a dielectric layer proximate to the top surface of each of the first copper regions during the damascene process. After depositing a second substrate over the dielectric, a number of second openings in a second substrate are made. Next, a number of second copper regions are formed in the second openings, during the damascene process. The dielectric region is thus disposed between the first copper regions and the second copper regions. In so doing, the dielectric region forms a dielectric barrier between the first copper regions and the second copper regions such that a metal-insulator-metal (MIM) capacitor is formed during a damascene process.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: November 11, 2003
    Assignees: Chartered Semiconductors Manufacturing Limited, Agilent Technologies Incorporated
    Inventors: Chit Hwei Ng, Chaw Sing Ho
  • Publication number: 20030203584
    Abstract: Methods for forming a metal-insulator-metal (MIM) capacitor using an organic anti-reflective coating (ARC) are described. The first electrode of the MIM capacitor is formed from a first metal layer. The organic ARC is applied, and the second electrode of the MIM capacitor is formed from a second metal layer. The organic ARC is then removed using a nominal clean technique. Because the organic ARC is removed, the performance of the MIM capacitor is improved. Specifically, the breakdown voltage of the MIM capacitor increases and the leakage current decreases.
    Type: Application
    Filed: April 25, 2002
    Publication date: October 30, 2003
    Inventors: Ng Chit Hwei, Shao Kai, Bao Guang Wen, Tjoa Tjin Tjin, Sanford Chu
  • Publication number: 20030201476
    Abstract: There is a need for adjustable capacitors for use in LC or RC matching networks in micro-circuits. This has been achieved by forming a set of individual capacitors that share a common bottom electrode. The areas of the top electrodes of these individual capacitors are chosen to be in an integral ratio to one another so that they can be combined to produce any capacitance within a range of unit values. For example, if four capacitors whose areas are in the ratio of 5:2:1:1, are provided, then any capacitance in a range of from 1 to 9 can be generated, depending on how the top electrodes are connected. Such connections can be hard-wired within the final wiring level to provide a factory adjustable capacitor or they can be connected through field programmable devices to produce a field programmable capacitor. A process for manufacturing the device is also described.
    Type: Application
    Filed: April 25, 2002
    Publication date: October 30, 2003
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wei Hua Cheng, Daniel Yen, Chit Hwei Ng, Marvin Liao
  • Patent number: 6638844
    Abstract: A method of reducing substrate coupling and noise for one or more RFCMOS components comprising the following steps. A substrate having a frontside and a backside is provided. One or more RFCMOS components are formed over the substrate. One or more isolation structures are formed within the substrate proximate the one or more RFCOMS components. The backside of the substrate is etched to form respective trenches within the substrate and over at least the one or more isolation structures. The respective trenches are filled with dielectric material whereby the substrate coupling and noise for the one or more RFCMOS components are reduced.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: October 28, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Sanford Chu, Chit Hwei, Lap Chan
  • Patent number: 6624040
    Abstract: A method for fabricating an increased capacitance metal-insulator-metal capacitor using an integrated copper dual damascene process is described. A first dual damascene opening and a pair of second dual damascene openings are provided in a first dielectric layer overlying a substrate. The first and second dual damascene openings are filled with a first copper layer wherein the filled first dual damascene opening forms a logic interconnect and the filled pair of second dual damascene openings forms a pair of capacitor electrodes. The first dielectric layer is etched away between the pair of capacitor electrodes leaving a space between the pair of capacitor electrodes. The space between the pair of capacitor electrodes is filled with a high dielectric constant material to complete fabrication of a vertical MIM capacitor in the fabrication of an integrated circuit device. The fabrication of the capacitor can begin at any metal layer.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: September 23, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chit Hwei Ng, Chaw Sing Ho, John E. Martin
  • Patent number: 6608362
    Abstract: A method of fabricating high quality passive components having reduced capacitive and magnetic effects by using a Schottky diode underlying the passive components in the manufacture of integrated circuits is described. A Schottky diode is formed completely covering an active area where passive devices are to be formed. The Schottky diode is covered with a dielectric layer. Passive components are formed overlying the dielectric layer wherein the Schottky diode reduces substrate noise resulting in high quality of the passive components.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: August 19, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Shao Kai, Sanford Chu, Chit Hwei Ng, Jia Zhen Zheng, Sia Choon Beng, Chew Kok Wai
  • Publication number: 20030092259
    Abstract: In one embodiment, the present invention recites forming a number of first openings in a first substrate. The present embodiment then recites forming a copper region within each first openings during a damascene process, wherein each copper region has a top surface. The present embodiment then disposes a dielectric layer proximate to the top surface of each of the first copper regions during the damascene process. After depositing a second substrate over the dielectric, a number of second openings in a second substrate are made. Next, a number of second copper regions are formed in the second openings, during the damascene process. The dielectric region is thus disposed between the first copper regions and the second copper regions. In so doing, the dielectric region forms a dielectric barrier between the first copper regions and the second copper regions such that a metal-insulator-metal (MIM) capacitor is formed during a damascene process.
    Type: Application
    Filed: November 13, 2001
    Publication date: May 15, 2003
    Applicant: CHARTERED SEMICONDUCTORS MANUFACTURED LIMITED
    Inventors: Chit Hwei Ng, Chaw Sing Ho
  • Patent number: 6548367
    Abstract: In one method embodiment, the present invention recites forming an opening in a substrate during a damascene process. The present embodiment then recites forming a dielectric region having two curvilinear surfaces opposite one another at least partially within the opening during the damascene process. The surfaces are curvilinear with respect to a horizontal cross-section. The present embodiment then recites forming a first copper region having a curvilinear surface proximate one of the surfaces of the dielectric region during the damascene process. The present embodiment then recites forming a second copper region having a curvilinear surface proximate a second surface of the dielectric region during the damascene process. In so doing, the dielectric region forms a dielectric barrier between the first copper region and the second copper region such that the vertical cylindrical MIM capacitor is formed.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 15, 2003
    Assignee: Chartered Semiconductor Manufacturing Limited
    Inventors: Chit Hwei Ng, Chaw Sing Ho
  • Patent number: 6528838
    Abstract: In one method embodiment, the present invention recites forming an opening in a substrate during a damascene process. The present embodiment then recites forming a dielectric region having two curvilinear surfaces opposite one another at least partially within the opening during the damascene process. The surfaces are curvilinear with respect to a horizontal cross-section. The present embodiment then recites forming a first copper region having a curvilinear surface proximate one of the surfaces of the dielectric region during the damascene process. The present embodiment then recites forming a second copper region having a curvilinear surface proximate a second surface of the dielectric region during the damascene process. In so doing, the dielectric region forms a dielectric barrier between the first copper region and the second copper region such that the vertical cylindrical MIM capacitor is formed.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: March 4, 2003
    Assignees: Chartered Semiconductors Manufacturing Limited, Agilent Technologies, Incorporated
    Inventors: Chit Hwei Ng, Chaw Sing Ho
  • Patent number: 6410376
    Abstract: A new method for forming a dual-metal gate CMOS transistors is described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A nitride layer is deposited overlying a gate dielectric layer and patterned to form a first dummy gate in each of the active areas. First ions are implanted to form source/drain regions in each of the active areas not covered by the first dummy gates. The first dummy gates are isotropically etched to form second dummy gates thinner than the first dummy gates. Second ions are implanted to form lightly doped source/drain regions in each of the active areas not covered by the second dummy gates. Dielectric spacers are formed on sidewalls of the second dummy gates and the source/drain regions are silicided. A dielectric layer is deposited and planarized to the second dummy gates. Thereafter, the second dummy gates are removed, leaving gate openings in the dielectric layer. A mask is formed over the PMOS active area.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: June 25, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chit Hwei Ng, Chaw Sing Ho