Patents by Inventor Chongyang Wang

Chongyang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9843510
    Abstract: The present invention relates to a method for selecting a label switched path LSP, which is applied in an MPLS network and includes: determining an energy engineering parameter of a network element itself in the network, where the network element is a network element on any candidate LSP between a source network element and a destination network element; receiving, by the network element, Interior Gateway Protocol IGP messages sent by other network elements in the network, and obtaining an energy engineering parameter of each of the other network elements; and selecting, according to the energy engineering parameter of the network element itself and the energy engineering parameter of each of the other network elements, a transmission path for the source network element and the destination network element.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: December 12, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Chongyang Wang, Jianjun Yang
  • Publication number: 20150256487
    Abstract: A method for managing a connection apparatus and a connection apparatus are disclosed. In an embodiment the connection apparatus includes a first connector configured to be connected to a service processing unit, a second connector configured to be connected to a first switching unit, a third connector configured to be connected to a second switching unit, wherein the third connector is further configured to be disconnected from the second switching unit and connected to the first switching unit. The apparatus further comprises a first transmission medium, a second transmission medium, one end of the first transmission medium being directly connected to the first connector, one end of the second transmission medium being directly connected to the first connector, another end of the first transmission medium being directly connected to the second connector, and another end of the second transmission medium being directly connected to the third connector.
    Type: Application
    Filed: May 22, 2015
    Publication date: September 10, 2015
    Inventors: Chongyang Wang, Zhigang Guo
  • Publication number: 20150212963
    Abstract: Embodiments of the present invention provide a connecting apparatus and a system. The connecting apparatus includes N interconnection units, M line processing units, and X switch processing units, where each interconnection unit is connected to at least one switch processing unit, each switch processing unit is connected to only one interconnection unit, each interconnection unit is connected to the M line processing units, each line processing unit is connected to the N interconnection units, M is a positive integer, N is a positive integer, and X is greater than or equal to N. In addition, the embodiments of the present invention further provide another connecting apparatus and system. According to the foregoing technical solutions, a connecting mode between an LPU and an SPU is relatively flexible.
    Type: Application
    Filed: March 27, 2015
    Publication date: July 30, 2015
    Inventors: Chongyang Wang, Jun Zhang
  • Publication number: 20130286288
    Abstract: Embodiments are provided herein to achieve video or image sequence encoding with an improved denoising algorithm that is both efficient computationally and has acceptable overhead cost in comparison to other denoising schemes for video encoding. The embodiments include using recursive bilateral filtering as part of the denoising algorithm, which is integrated into a video encoder to overcome limitations of other encoder-integrated denoising algorithms. An embodiment method includes receiving, at a filtering and residual computation function at the encoder, a macro block comprising a plurality of pixels. The filtering and residual computation function also receives, from a motion estimation function at the encoder, a reference block. The reference block comprises a plurality of reference pixels corresponding to the macro block.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 31, 2013
    Inventors: Dong-Qing Zhang, Chongyang Wang, Hong Heather Yu, Jianyu Zhang
  • Patent number: 8550031
    Abstract: Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20120320361
    Abstract: Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 20, 2012
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchem, Brian Lue
  • Publication number: 20120257618
    Abstract: A system and method for expanding a chassis network using soft interconnects, including a hybrid chassis comprising a first fabric card comprising a first switching fabric, a second fabric card comprising a second switching fabric, a first set of line cards coupled to the first switching fabric via a first set of hard connections, and coupled to an interface associated with the second switching fabric via a soft connection, and a second set of line cards coupled to the second fabric card.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Yuancheng Christopher Pan, Tian Yu, Chongyang Wang, Chunxing Huang, Zhenhua Xu
  • Publication number: 20120180983
    Abstract: The present invention generally provides a cluster tool for processing a substrate. In one embodiment, the cluster tool comprises at least one processing rack, which comprises a first plurality of substrate processing chambers that are positioned adjacent to each other and aligned in a first direction, a second plurality of substrate processing chambers that are positioned adjacent to each other and adjacent to at least one of the first plurality of substrate processing chambers, the second plurality of substrate processing chambers being positioned in a second direction relative to the first direction, a first shuttle robot movable in the first direction for moving substrates between each of the first plurality of substrate processing chambers, and a second shuttle robot movable in the second direction for moving substrates between each of the second plurality of substrate processing chambers.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 19, 2012
    Inventors: TETSUYA ISHIKAWA, RICK J. ROBERTS, HELEN R. ARMER, LEON VOLFOVSKI, JAY D. PINSON, MICHAEL RICE, DAVID H. QUACH, MOHSEN S. SALEK, ROBERT LOWRANCE, JOHN A. BACKER, WILLIAM TYLER WEAVER, CHARLES CARLSON, CHONGYANG WANG, JEFFREY HUDGENS, HARALD HERCHEN, BRIAN LUE
  • Patent number: 8215262
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, a cluster tool for processing a substrate includes a first processing rack, a first robot assembly and a second robot assembly operable to transfer substrates to substrate processing chambers in the first processing rack, and a horizontal motion assembly. The horizontal motion assembly includes one or more walls that form an interior region in which a motor is enclosed. The one or more walls defining an elongated opening through which a robot support interface travels, the robot support interface supporting a robot of the horizontal motion assembly.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 8181596
    Abstract: An apparatus for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, a smaller system footprint, and a more repeatable wafer history. Embodiments provide for a cluster tool comprising first and second processing racks, each having two or more vertically stacked substrate processing chambers, a first robot assembly able to access the first processing rack from a first side, a second robot assembly able to access the first processing rack from a second side and the second processing rack from a first side, a third robot assembly able to access the second processing rack from a second side, and a fourth robot assembly able to access the first and second processing racks and to load substrates in a cassette.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 8146530
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 7925377
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment of the cluster tool, grouping substrates together, and transferring and processing the substrates in groups of two or more, improves system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue, John A. Backer
  • Patent number: 7743728
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 7694647
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 7580633
    Abstract: A method for data-flow protection of an optical interface in data communication equipment includes: receiving an optical-signal from a source-neighboring device, then duplicating the received optical signal into two duplicated optical signals. One of the optical signals is sent to a protected device for processing. According to the protected device working status, either the optical signal having been processed by the protected device or the second duplicated optical signal is selected and sent to a destination-neighboring device. The device includes a first optical-signal duplicating unit and an optical-signal selecting unit. The first optical-signal duplicating unit is used for duplicating an optical signal, and the optical-signal selecting unit is used as a selector. The method and device proposed by the disclosure are independent to network topology and can protect data-flow reliably.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 25, 2009
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Chongyang Wang, Zhichun Zhang, Shuyou Dong
  • Publication number: 20090064929
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Publication number: 20090064928
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090067956
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090022490
    Abstract: A method for data-flow protection of an optical interface in data communication equipment includes: receiving an optical-signal from a source-neighboring device, then duplicating the received optical signal into two duplicated optical signals. One of the optical signals is sent to a protected device for processing. According to the protected device working status, either the optical signal having been processed by the protected device or the second duplicated optical signal is selected and sent to a destination-neighboring device. The device includes a first optical-signal duplicating unit and an optical-signal selecting unit. The first optical-signal duplicating unit is used for duplicating an optical signal, and the optical-signal selecting unit is used as a selector. The method and device proposed by the disclosure are independent to network topology and can protect data-flow reliably.
    Type: Application
    Filed: September 26, 2008
    Publication date: January 22, 2009
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Chongyang Wang, Zhichun Zhang, Shuyou Dong
  • Patent number: 7447428
    Abstract: The invention discloses a method and device for data-flow protection of an optical interface in data communication equipment. First, receiving an optical-signal from a source-neighboring device, then duplicating the received optical signal into two duplicated optical signals. One of them is sent to a protected device for processing. According to the protected device working status, either the optical signal having been processed by the protected device or the second duplicated optical signal is selected and sent to a destination-neighboring device. The device of the invention includes a first optical-signal duplicating unit and an optical-signal selecting unit. The first optical-signal duplicating unit is used for duplicating an optical signal, and the optical-signal selecting unit is used as a selector. The method and device proposed by the invention are independent to network topology and can protect data-flow reliably.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: November 4, 2008
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Chongyang Wang, Zhichun Zhang, Shunyou Dong