Patents by Inventor Chris J. Paidosh

Chris J. Paidosh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20240100323
    Abstract: A medical device lead connector includes electrically conducting contact rings spaced apart by an electrically insulating ring and in axial alignment. The electrically conducting contact ring and the insulating ring having an interface bond on an atomic level.
    Type: Application
    Filed: December 6, 2023
    Publication date: March 28, 2024
    Inventors: Darren A. Janzig, Andrew J. Thom, Chris J. Paidosh, Brad C. Tischendorf, Gerald G. Lindner
  • Patent number: 11872392
    Abstract: A medical device lead connector includes electrically conducting contact rings spaced apart by an electrically insulating ring and in axial alignment. The electrically conducting contact ring and the insulating ring having an interface bond on an atomic level.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: January 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Darren A. Janzig, Andrew J. Thom, Chris J. Paidosh, Brad C. Tischendorf, Gerald G. Lindner
  • Patent number: 11793998
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: October 24, 2023
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, Eric H. Bonde, Erik R. Scott, Gabriela C. Molnar, Gordon O. Munns, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Thomas P. Miltich, Todd V. Smith, Xuan K. Wei
  • Patent number: 11730947
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: August 22, 2023
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 11730948
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: August 22, 2023
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 11672969
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: June 13, 2023
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 11617879
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: April 4, 2023
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Réitérer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 11559694
    Abstract: A method of manufacturing a hermetic lead connector includes fixing an electrically insulating ring between an electrically conducting contact ring and an electrically conducting spacer ring to form a hermetic ring subassembly, and fixing a plurality of the hermetic ring subassemblies in axial alignment to form a hermetic lead connector. The hermetic lead connector includes an open end, an outer surface, and an inner surface defining a lead aperture. The hermetic lead connector provides a hermetic seal between the outer surface and the inner surface.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: January 24, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Darren A. Janzig, Gerald G. Lindner, Chris J. Paidosh
  • Patent number: 11426514
    Abstract: The disclosure is directed to a pressure sensor of an implantable medical device. The pressure sensor may utilize detect fluid pressure based on a changing capacitance between two capacitive elements. The pressure sensor may define at least a portion of a fluid enclosure of the IMD. In one example, the pressure sensor has a self-aligning housing shape that occludes an opening in the pump bulkhead of the IMD. An operative surface of the pressure and the portion of the fluid enclosure may be formed of a corrosion resistant and/or biocompatible material. A first capacitive element of the pressure sensor may be a metal alloy diaphragm that deflects in response to external fluid pressure. A second capacitive element of the pressure sensor may be a metal coating on a rigid insulator sealed from the fluid by the diaphragm and a housing of the sensor.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: August 30, 2022
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, James M. Haase, Chris J. Paidosh, Darren A. Janzig, Timothy J. Denison
  • Patent number: 11331503
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a shield member defining a first portion of an interior cavity of the implantable medical device and a skirted feedthrough assembly. The feedthrough assembly includes a shield extender having a top face and a sidewall that extends from the top face so that the top face and the sidewall are a single continuous component. At least one feedthrough aperture extends through the top face.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: May 17, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: John E. Kast, Linda M. Johnson-Morke, Chris J. Paidosh, Randy S. Roles
  • Publication number: 20220080188
    Abstract: A medical device lead connector includes electrically conducting contact rings spaced apart by an electrically insulating ring and in axial alignment. The electrically conducting contact ring and the insulating ring having an interface bond on an atomic level.
    Type: Application
    Filed: November 29, 2021
    Publication date: March 17, 2022
    Inventors: Darren A. Janzig, Andrew J. Thom, Chris J. Paidosh, Brad C. Tischendorf, Gerald G. Lindner
  • Patent number: 11213673
    Abstract: A medical device lead connector includes electrically conducting contact rings spaced apart by an electrically insulating ring and in axial alignment. The electrically conducting contact ring and the insulating ring having an interface bond on an atomic level.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: January 4, 2022
    Assignee: Medtronic, Inc.
    Inventors: Darren A. Janzig, Andrew J. Thom, Chris J. Paidosh, Brad C. Tischendorf, Gerald G. Lindner
  • Patent number: 11154721
    Abstract: A one-piece electrical contact ring for use in a lead receptacle of an implantable medical device includes (i) a tubular body defining a cavity extending through the body and (ii) a plurality of resiliently deflectable elements extending from the tubular body into the cavity. The deflectable elements have a lead contacting portion configured to contact the lead when received by the cavity. The lead contacting portions of the deflectable elements in a relaxed state are located in a plane that intersects the tubular body and are configured to deflect along the plane towards the tubular body as the lead is inserted in the contact ring. The contact ring may further include a plurality of stops, each configured to (i) engage a stop portion of the elements when the elements are sufficiently outwardly deflected and (ii) inhibit further outward deflection of the elements when the stops engage the stop portions.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: October 26, 2021
    Assignee: Medtronic, Inc.
    Inventors: Darren A. Janzig, Chris J. Paidosh, Paulette C. Olson, Gerald G. Lindner
  • Publication number: 20200398042
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 24, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Publication number: 20200384259
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200384260
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C. M. Pape, Joel A. Anderson, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Publication number: 20200384261
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C.M. Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200376255
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith