Patents by Inventor Chris M. Carlson

Chris M. Carlson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220077186
    Abstract: A memory array comprising strings of memory cells comprises a vertical stack comprising alternating insulative tiers and conductive tiers. The strings of memory cells in the stack comprise channel-material strings and storage-material strings extending through the insulative tiers and the conductive tiers. At least some of the storage material of the storage-material strings in individual of the insulative tiers are intrinsically less charge-transmissive than is the storage material in the storage-material strings in individual of the conductive tiers. Other aspects, including method, are disclosed.
    Type: Application
    Filed: November 12, 2021
    Publication date: March 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Manzar Siddik, Chris M. Carlson, Terry H. Kim, Kunal Shrotri, Srinath Venkatesan
  • Publication number: 20210408039
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 30, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Cole Smith, Ramey M. Abdelrahaman, Silvia Borsari, Chris M. Carlson, David Daycock, Matthew J. King, Jin Lu
  • Patent number: 11211399
    Abstract: A vertical structure extends through a tiered structure of alternating conductive and insulative materials. The vertical structure includes a channel structure and a tunneling structure. At least one of the conductive materials of the tiered structure provides a select gate tier (e.g., including a control gate for a select gate drain (SGD) transistor). Adjacent the select gate tier of the tiered structure, the tunneling structure consists of or consists essentially of an oxide-only material. Adjacent the word line tiers of the tiered structure, the tunneling structure comprises at least one material that is other than an oxide-only material, such as a nitride or oxynitride. The oxide-only material adjacent the select gate tier may inhibit unintentional loss of charge from a neighboring charge storage structure, which may improve the stability of the threshold voltage (Vth) of the select gate tier.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 28, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Ugo Russo, Chris M. Carlson
  • Patent number: 11205660
    Abstract: A memory array comprising strings of memory cells comprises a vertical stack comprising alternating insulative tiers and conductive tiers. The strings of memory cells in the stack comprise channel-material strings and storage-material strings extending through the insulative tiers and the conductive tiers. At least some of the storage material of the storage-material strings in individual of the insulative tiers are intrinsically less charge-transmissive than is the storage material in the storage-material strings in individual of the conductive tiers. Other aspects, including method, are disclosed.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: December 21, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Manzar Siddik, Chris M. Carlson, Terry H. Kim, Kunal Shrotri, Srinath Venkatesan
  • Patent number: 11177269
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. First charge-blocking material is formed to extend elevationally along the vertically-alternating tiers. The first charge-blocking material has k of at least 7.0 and comprises a metal oxide. A second charge-blocking material is formed laterally inward of the first charge-blocking material. The second charge-blocking material has k less than 7.0. Storage material is formed laterally inward of the second charge-blocking material. Insulative charge-passage material is formed laterally inward of the storage material. Channel material is formed to extend elevationally along the insulative tiers and the wordline tiers laterally inward of the insulative charge-passage material. Structure embodiments are disclosed.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: November 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Bharat Bhushan, Chris M. Carlson, Collin Howder
  • Publication number: 20210343736
    Abstract: An electronic structure comprising stacks comprising alternating dielectric materials and conductive materials in a cell region of the electronic structure. A pillar high-k dielectric material is adjacent to the stacks and in a pillar region of the electronic structure. A charge blocking material, a nitride material, a tunnel dielectric material, and a channel material are adjacent to the pillar high-k dielectric material in the pillar region of the electronic structure. A cell high-k dielectric material surrounds the conductive materials in the cell region of the electronic structure. The cell high-k dielectric material adjoins a portion of the pillar high-k dielectric material. Additional electronic structures are disclosed, as are related electronic devices, systems, and methods of forming an electronic device.
    Type: Application
    Filed: April 29, 2020
    Publication date: November 4, 2021
    Inventors: Shyam Surthi, Chris M. Carlson, Richard J. Hill, Davide Resnati
  • Patent number: 11152388
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: October 19, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Cole Smith, Ramey M. Abdelrahaman, Silvia Borsari, Chris M. Carlson, David Daycock, Matthew J. King, Jin Lu
  • Publication number: 20210265365
    Abstract: Electronic apparatus and methods of forming the electronic apparatus may include one or more charge trap structures for use in a variety of electronic systems and devices, where each charge trap structure includes a dielectric barrier between a gate and a blocking dielectric on a charge trap region of the charge trap structure. In various embodiments, a void is located between the charge trap region and a region on which the charge trap structure is disposed. In various embodiments, a tunnel region separating a charge trap region from a semiconductor pillar of a charge trap structure, can be arranged such that the tunnel region and the semiconductor pillar are boundaries of a void. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Chris M. Carlson, Ugo Russo
  • Publication number: 20210202521
    Abstract: Various embodiments include methods and apparatus having a number of charge trap structures, where each charge trap structure includes a dielectric barrier between a gate and a blocking dielectric region, the blocking dielectric region located on a charge trap region of the charge trap structure. At least a portion of the gate can be separated by a void from a region which the charge trap structure is directly disposed. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: February 22, 2021
    Publication date: July 1, 2021
    Inventor: Chris M. Carlson
  • Patent number: 11037951
    Abstract: Electronic apparatus and methods of forming the electronic apparatus may include one or more charge trap structures for use in a variety of electronic systems and devices, where each charge trap structure includes a dielectric barrier between a gate and a blocking dielectric on a charge trap region of the charge trap structure. In various embodiments, a void is located between the charge trap region and a region on which the charge trap structure is disposed. In various embodiments, a tunnel region separating a charge trap region from a semiconductor pillar of a charge trap structure, can be arranged such that the tunnel region and the semiconductor pillar are boundaries of a void. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: June 15, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Chris M. Carlson, Ugo Russo
  • Publication number: 20210175247
    Abstract: A memory array comprising strings of memory cells comprises a vertical stack comprising alternating insulative tiers and conductive tiers. The strings of memory cells in the stack comprise channel-material strings and storage-material strings extending through the insulative tiers and the conductive tiers. At least some of the storage material of the storage-material strings in individual of the insulative tiers are intrinsically less charge-transmissive than is the storage material in the storage-material strings in individual of the conductive tiers. Other aspects, including method, are disclosed.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Manzar Siddik, Chris M. Carlson, Terry H. Kim, Kunal Shrotri, Srinath Venkatesan
  • Publication number: 20210151454
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. First charge-blocking material is formed to extend elevationally along the vertically-alternating tiers. The first charge-blocking material has k of at least 7.0 and comprises a metal oxide. A second charge-blocking material is formed laterally inward of the first charge-blocking material. The second charge-blocking material has k less than 7.0. Storage material is formed laterally inward of the second charge-blocking material. Insulative charge-passage material is formed laterally inward of the storage material. Channel material is formed to extend elevationally along the insulative tiers and the wordline tiers laterally inward of the insulative charge-passage material. Structure embodiments are disclosed.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Bharat Bhushan, Chris M. Carlson, Collin Howder
  • Publication number: 20210111184
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 15, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Cole Smith, Ramey M. Abdelrahaman, Silvia Borsari, Chris M. Carlson, David Daycock, Matthew J. King, Jin Lu
  • Publication number: 20210074856
    Abstract: Some embodiments include device having a gate spaced from semiconductor channel material by a dielectric region, and having nitrogen-containing material directly against the semiconductor channel material and on an opposing side of the semiconductor channel material from the dielectric region. Some embodiments include a device having a gate spaced from semiconductor channel material by a dielectric region, and having nitrogen within at least some of the semiconductor channel material. Some embodiments include a NAND memory array which includes a vertical stack of alternating insulative levels and wordline levels. Channel material extends vertically along the stack. Charge-storage material is between the channel material and the wordline levels. Dielectric material is between the channel material and the charge-storage material. Nitrogen is within the channel material. Some embodiments include methods of forming NAND memory arrays.
    Type: Application
    Filed: October 28, 2020
    Publication date: March 11, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Chris M. Carlson, Hung-Wei Liu, Jie Li, Dimitrios Pavlopoulos
  • Patent number: 10937802
    Abstract: Various embodiments include methods and apparatus having a number of charge trap structures, where each charge trap structure includes a dielectric barrier between a gate and a blocking dielectric region, the blocking dielectric region located on a charge trap region of the charge trap structure. At least a portion of the gate can be separated by a void from a region which the charge trap structure is directly disposed. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: March 2, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Chris M. Carlson
  • Publication number: 20210050363
    Abstract: A vertical structure extends through a tiered structure of alternating conductive and insulative materials. The vertical structure includes a channel structure and a tunneling structure. At least one of the conductive materials of the tiered structure provides a select gate tier (e.g., including a control gate for a select gate drain (SGD) transistor). Adjacent the select gate tier of the tiered structure, the tunneling structure consists of or consists essentially of an oxide-only material. Adjacent the word line tiers of the tiered structure, the tunneling structure comprises at least one material that is other than an oxide-only material, such as a nitride or oxynitride. The oxide-only material adjacent the select gate tier may inhibit unintentional loss of charge from a neighboring charge storage structure, which may improve the stability of the threshold voltage (Vth) of the select gate tier.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 18, 2021
    Inventors: Ugo Russo, Chris M. Carlson
  • Patent number: 10910476
    Abstract: Some embodiments include an integrated structure having a gallium-containing material between a charge-storage region and a semiconductor-containing channel region. Some embodiments include an integrated structure having a charge-storage region under a conductive gate, a tunneling region under the charge-storage region, and a semiconductor-containing channel region under the tunneling region. The tunneling region includes at least one dielectric material directly adjacent a gallium-containing material. Some embodiments include an integrated structure having a charge-trapping region under a conductive gate, a first oxide under the charge-storage region, a gallium-containing material under the first oxide, a second oxide under the gallium-containing material, and a semiconductor-containing channel region under the second oxide.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: February 2, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Chris M. Carlson
  • Patent number: 10854747
    Abstract: Some embodiments include device having a gate spaced from semiconductor channel material by a dielectric region, and having nitrogen-containing material directly against the semiconductor channel material and on an opposing side of the semiconductor channel material from the dielectric region. Some embodiments include a device having a gate spaced from semiconductor channel material by a dielectric region, and having nitrogen within at least some of the semiconductor channel material. Some embodiments include a NAND memory array which includes a vertical stack of alternating insulative levels and wordline levels. Channel material extends vertically along the stack. Charge-storage material is between the channel material and the wordline levels. Dielectric material is between the channel material and the charge-storage material. Nitrogen is within the channel material. Some embodiments include methods of forming NAND memory arrays.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: December 1, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Chris M. Carlson, Hung-Wei Liu, Jie Li, Dimitrios Pavlopoulos
  • Publication number: 20200266203
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. First charge-blocking material is formed to extend elevationally along the vertically-alternating tiers. The first charge-blocking material has k of at least 7.0 and comprises a metal oxide. A second charge-blocking material is formed laterally inward of the first charge-blocking material. The second charge-blocking material has k less than 7.0. Storage material is formed laterally inward of the second charge-blocking material. Insulative charge-passage material is formed laterally inward of the storage material. Channel material is formed to extend elevationally along the insulative tiers and the wordline tiers laterally inward of the insulative charge-passage material. Structure embodiments are disclosed.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 20, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Bharat Bhushan, Chris M. Carlson, Collin Howder
  • Publication number: 20200258906
    Abstract: Various embodiments, disclosed herein, include methods and apparatus having charge trap structures, where each charge trap structure includes a dielectric harrier between a gate and a blocking dielectric on a charge trap region of the charge trap structure. In various embodiments, material of the dielectric harrier of each of the charge trap structures may have a dielectric constant greater than that of aluminum oxide. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: April 23, 2020
    Publication date: August 13, 2020
    Inventor: Chris M. Carlson