Patents by Inventor Chris M. Thomas

Chris M. Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12113486
    Abstract: An amplifier with stacked transconducting cells in parallel and/or cascade “current mode” combining is disclosed herein. In one or more embodiments, a method for operation of a high-voltage signal amplifier comprises inputting, into each transconducting cell of a plurality of transconducting cells, a direct current (DC) supply current (Idc), an alternating current (AC) radio frequency (RF) input current (IRF_IN), and an RF input signal (RFIN). The method further comprises outputting, by each of the transconducting cells of the plurality of transconducting cells, the DC supply current (Idc) and an AC RF output current (IRF_OUT). In one or more embodiments, the transconducting cells are connected together in cascode for the DC supply current (Idc), are connected together in parallel (or in cascade) for the RF input signal (RFIN), and are connected together in parallel (or in cascade) for the AC RF output currents (IRF_OUT).
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: October 8, 2024
    Assignee: The Boeing Company
    Inventors: Chris M. Thomas, Brian K. Kormanyos
  • Publication number: 20220302881
    Abstract: An open loop process and temperature independent bias circuit for stacked device amplifiers is disclosed herein. In one or more embodiments, a method for biasing a stacked high-voltage signal amplifier with a voltage divider bias module comprises generating, by the voltage divider bias module from a power supply voltage (VDD), a plurality of control voltage biases, which comprise a plurality of voltage references plus an offset voltage term (Vtemp). In one or more embodiments, the plurality of voltage references are each proportional to a division of the power supply voltage (VDD), and the offset voltage term (Vtemp) is proportional to temperature and is a function of process variation. The method further comprises biasing, a plurality of devices of the stacked high-voltage signal amplifier, with the control voltage biases.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 22, 2022
    Inventors: Chris M. Thomas, Brian K. Kormanyos
  • Publication number: 20220166385
    Abstract: An amplifier with stacked transconducting cells in parallel and/or cascade “current mode” combining is disclosed herein. In one or more embodiments, a method for operation of a high-voltage signal amplifier comprises inputting, into each transconducting cell of a plurality of transconducting cells, a direct current (DC) supply current (Idc), an alternating current (AC) radio frequency (RF) input current (IRF_IN), and an RF input signal (RFIN). The method further comprises outputting, by each of the transconducting cells of the plurality of transconducting cells, the DC supply current (Idc) and an AC RF output current (IRF_OUT). In one or more embodiments, the transconducting cells are connected together in cascode for the DC supply current (Idc), are connected together in parallel (or in cascade) for the RF input signal (RFIN), and are connected together in parallel (or in cascade) for the AC RF output currents (IRF_OUT).
    Type: Application
    Filed: July 16, 2021
    Publication date: May 26, 2022
    Inventors: Chris M. Thomas, Brian K. Kormanyos