Patents by Inventor Chris Olson

Chris Olson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136983
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Application
    Filed: October 24, 2023
    Publication date: April 25, 2024
    Inventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
  • Patent number: 11811367
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: November 7, 2023
    Assignee: pSemi Corporation
    Inventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
  • Publication number: 20230283237
    Abstract: A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
    Type: Application
    Filed: March 10, 2023
    Publication date: September 7, 2023
    Inventors: Simon Edward Willard, Chris Olson, Tero Tapio Ranta
  • Patent number: 11606065
    Abstract: A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: March 14, 2023
    Assignee: pSemi Corporation
    Inventors: Simon Edward Willard, Chris Olson, Tero Tapio Ranta
  • Publication number: 20220329215
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Application
    Filed: April 27, 2022
    Publication date: October 13, 2022
    Inventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
  • Patent number: 11323078
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: May 3, 2022
    Assignee: pSemi Corporation
    Inventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
  • Publication number: 20210067096
    Abstract: A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 4, 2021
    Inventors: Simon Edward Willard, Chris Olson, Tero Tapio Ranta
  • Publication number: 20210058041
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 25, 2021
    Inventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
  • Patent number: 10784818
    Abstract: A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: September 22, 2020
    Assignee: pSemi Corporation
    Inventors: Simon Edward Willard, Chris Olson, Tero Tapio Ranta
  • Patent number: 10763798
    Abstract: An amplifier with switchable and tunable harmonic terminations and a variable impedance matching network is presented. The amplifier can adapt to different modes and different frequency bands of operation by appropriate switching and/or tuning of the harmonic terminations and/or the variable impedance matching network.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: September 1, 2020
    Assignee: pSemi Corporation
    Inventors: Gary Frederick Kaatz, Chris Olson
  • Patent number: 10756684
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: August 25, 2020
    Assignee: pSemi Corporation
    Inventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
  • Publication number: 20190379330
    Abstract: A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 12, 2019
    Inventors: Simon Edward Willard, Chris Olson, Tero Tapio Ranta
  • Publication number: 20190267954
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Application
    Filed: May 9, 2019
    Publication date: August 29, 2019
    Inventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
  • Patent number: 10367453
    Abstract: A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: July 30, 2019
    Assignee: pSemi Corporation
    Inventors: Simon Edward Willard, Chris Olson, Tero Tapio Ranta
  • Patent number: 10333471
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 25, 2019
    Assignee: pSemi Corporation
    Inventors: Dan Willaim Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
  • Publication number: 20190115879
    Abstract: An amplifier with switchable and tunable harmonic terminations and a variable impedance matching network is presented. The amplifier can adapt to different modes and different frequency bands of operation by appropriate switching and/or tuning of the harmonic terminations and/or the variable impedance matching network.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 18, 2019
    Inventors: Gary Frederick Kaatz, Chris Olson
  • Patent number: 10158328
    Abstract: Various envelope tracking amplifiers are presented that can be switched between an ET (envelope tracking) mode and a non-ET mode. Switches and/or tunable components are utilized in constructing the envelope tracking amplifiers that can be switched between the ET mode and the non-ET mode.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: December 18, 2018
    Assignee: pSemi Corporation
    Inventors: Dan William Nobbe, Jeffrey A. Dykstra, Chris Olson, James S. Cable
  • Patent number: 10116272
    Abstract: An amplifier with switchable and tunable harmonic terminations and a variable impedance matching network is presented. The amplifier can adapt to different modes and different frequency bands of operation by appropriate switching and/or tuning of the harmonic terminations and/or the variable impedance matching network.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: October 30, 2018
    Assignee: pSemi Corporation
    Inventors: Gary Frederick Kaatz, Chris Olson
  • Publication number: 20180159475
    Abstract: A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 7, 2018
    Inventors: Simon Edward Willard, Chris Olson, Tero Tapio Ranta
  • Publication number: 20180138870
    Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 17, 2018
    Inventors: Dan Willaim Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson