Patents by Inventor Chris Townsend
Chris Townsend has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12157556Abstract: In an aspect a system for fly-by-wire flight control configured for use in electric aircraft including at least a sensor, wherein the sensor is communicatively connected a pilot control and configured to detect a pilot input from the pilot control and generate, as a function of the pilot input, command datum. A system includes a flight controller, the flight controller including a computing device and configured to perform a voting algorithm, wherein performing the voting algorithm includes determining that the sensor is an allowed sensor, wherein determining that the sensor is an allowed sensor includes determining that the command datum is an active datum, determining the command datum is an admissible datum, generating, as a function of the command datum and the allowed sensor, a control surface datum wherein the control surface datum is correlated to the pilot input.Type: GrantFiled: May 25, 2023Date of Patent: December 3, 2024Assignee: BETA AIR, LLCInventors: Chris Townsend, Joshua E. Auerbach, Andrew Giroux
-
Patent number: 12145724Abstract: An electric aircraft having fixed pitch lift includes a plurality of flight components, wherein the plurality of flight components further comprises at least a lift propulsor component, wherein the lift propulsor component comprises a plurality of blades configured at an angle of attack, and a flight controller, wherein the flight controller is configured to calculate a flight element using an intermediate representation, and transmit the flight element to the plurality of flight components.Type: GrantFiled: November 11, 2021Date of Patent: November 19, 2024Assignee: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
-
Patent number: 12006024Abstract: The present invention is directed to systems and methods for redundant flight control configured for use in an aircraft. More specifically, a system is provided that includes a plurality of actuators that are configured to move a flight component of an aircraft such that one actuator is configured to move the flight component if the other actuator fails to move the flight component upon receipt of an attitude command from a pilot control.Type: GrantFiled: June 30, 2022Date of Patent: June 11, 2024Assignee: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend
-
Patent number: 11999467Abstract: A system of fall back flight control configured for use in aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.Type: GrantFiled: July 31, 2022Date of Patent: June 4, 2024Assignee: BETA Technologies, Inc.Inventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
-
Patent number: 11803195Abstract: Aspects relate to methods and systems for reversionary flight control for an electrical vertical take-off and landing (eVTOL) aircraft. An exemplary system includes a pilot control, a sensor configured to sense and transmit analog control data associated with a pilot interaction with the pilot control, a pilot interface module configured to receive the analog control data, convert the analog control data to digital control data, and transmit digital control, an actuator, and a flight controller. The flight controller may be configured to receive the digital control data, determine a primary command datum as a function of the digital control data, transmit the primary command datum to the actuator, determine that the digital control signal is non-functional, receive the analog control data, determine a reversionary command datum as a function of the analog control data, and transmit the reversionary command datum to the actuator.Type: GrantFiled: May 16, 2022Date of Patent: October 31, 2023Assignee: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter
-
Publication number: 20230312085Abstract: In an aspect a system for fly-by-wire flight control configured for use in electric aircraft including at least a sensor, wherein the sensor is communicatively connected a pilot control and configured to detect a pilot input from the pilot control and generate, as a function of the pilot input, command datum. A system includes a flight controller, the flight controller including a computing device and configured to perform a voting algorithm, wherein performing the voting algorithm includes determining that the sensor is an allowed sensor, wherein determining that the sensor is an allowed sensor includes determining that the command datum is an active datum, determining the command datum is an admissible datum, generating, as a function of the command datum and the allowed sensor, a control surface datum wherein the control surface datum is correlated to the pilot input.Type: ApplicationFiled: May 25, 2023Publication date: October 5, 2023Applicant: BETA AIR, LLCInventors: Chris Townsend, Joshua E. Auerbach, Andrew Giroux
-
Patent number: 11724797Abstract: A system of fall back flight control configured for use in electric aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the electric aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.Type: GrantFiled: July 1, 2021Date of Patent: August 15, 2023Assignee: BETA AIR, LLCInventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
-
Patent number: 11713109Abstract: In an aspect a system for fly-by-wire flight control configured for use in electric aircraft including at least a sensor, wherein the sensor is communicatively connected a pilot control and configured to detect a pilot input from the pilot control and generate, as a function of the pilot input, command datum. A system includes a flight controller, the flight controller including a computing device and configured to perform a voting algorithm, wherein performing the voting algorithm includes determining that the sensor is an allowed sensor, wherein determining that the sensor is an allowed sensor includes determining that the command datum is an active datum, determining the command datum is an admissible datum, generating, as a function of the command datum and the allowed sensor, a control surface datum wherein the control surface datum is correlated to the pilot input.Type: GrantFiled: October 30, 2021Date of Patent: August 1, 2023Assignee: BETA AIR, LLCInventors: Chris Townsend, Joshua E Auerbach, Andrew Giroux
-
Patent number: 11702192Abstract: Some aspects relate to systems and methods for fly-by-wire reversionary flight control including a pilot control, a plurality of sensors configured to: sense control data associated with the pilot control, and transmit the control data, a first actuator communicative with the plurality of sensors configured to receive the control data, determine a first command datum as a function of the control data and a distributed control algorithm, and actuate a first control element according to the first command datum.Type: GrantFiled: October 30, 2021Date of Patent: July 18, 2023Assignee: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
-
Publication number: 20230054141Abstract: The present invention is directed to systems and methods for redundant flight control configured for use in an aircraft. More specifically, a system is provided that includes a plurality of actuators that are configured to move a flight component of an aircraft such that one actuator is configured to move the flight component if the other actuator fails to move the flight component upon receipt of an attitude command from a pilot control.Type: ApplicationFiled: June 30, 2022Publication date: February 23, 2023Applicant: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend
-
Publication number: 20220404842Abstract: Aspects relate to methods and systems for reversionary flight control for an electrical vertical take-off and landing (eVTOL) aircraft. An exemplary system includes a pilot control, a sensor configured to sense and transmit analog control data associated with a pilot interaction with the pilot control, a pilot interface module configured to receive the analog control data, convert the analog control data to digital control data, and transmit digital control, an actuator, and a flight controller. The flight controller may be configured to receive the digital control data, determine a primary command datum as a function of the digital control data, transmit the primary command datum to the actuator, determine that the digital control signal is non-functional, receive the analog control data, determine a reversionary command datum as a function of the analog control data, and transmit the reversionary command datum to the actuator.Type: ApplicationFiled: May 16, 2022Publication date: December 22, 2022Applicant: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter
-
Publication number: 20220363368Abstract: Some aspects relate to systems and methods for fly-by-wire reversionary flight control including a pilot control, a plurality of sensors configured to: sense control data associated with the pilot control, and transmit the control data, a first actuator communicative with the plurality of sensors configured to receive the control data, determine a first command datum as a function of the control data and a distributed control algorithm, and actuate a first control element according to the first command datum.Type: ApplicationFiled: October 30, 2021Publication date: November 17, 2022Applicant: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
-
Publication number: 20220363404Abstract: In an aspect systems and methods for monitoring health of an electric vertical take-off and landing vehicle include at least a flight component, a first sensor, a computing device, and a pilot display. The first sensor is configured to sense a first characteristic associated with the at least a flight component and transmit the first characteristic. The computing device is communicative with the first sensor, and is configured to: receive the first characteristic, analyze the first characteristic, and determine a condition of the at least a flight component as a function of the first characteristic. The pilot display is communicative with the first sensor and the computing device and is configured to: receive the first characteristic and the condition of the at least a flight component and display the first characteristic and the condition of the at least a flight component.Type: ApplicationFiled: May 14, 2021Publication date: November 17, 2022Applicant: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
-
Publication number: 20220363405Abstract: Abstract of the Disclosure: In an aspect systems and methods for monitoring health of an electric vertical take-off and landing vehicle include at least a flight component, a first sensor, a computing device, and a pilot display. The first sensor is configured to sense a first characteristic associated with the at least a flight component and transmit the first characteristic. The computing device is communicative with the first sensor, and is configured to: receive the first characteristic, analyze the first characteristic, and determine a condition of the at least a flight component as a function of the first characteristic. The pilot display is communicative with the first sensor and the computing device and is configured to: receive the first characteristic and the condition of the at least a flight component and display the first characteristic and the condition of the at least a flight component.Type: ApplicationFiled: October 30, 2021Publication date: November 17, 2022Applicant: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
-
Publication number: 20220363377Abstract: An electric aircraft having fixed pitch lift includes a plurality of flight components, wherein the plurality of flight components further comprises at least a lift propulsor component, wherein the lift propulsor component comprises a plurality of blades configured at an angle of attack, and a flight controller, wherein the flight controller is configured to calculate a flight element using an intermediate representation, and transmit the flight element to the plurality of flight components.Type: ApplicationFiled: November 11, 2021Publication date: November 17, 2022Applicant: BETA AIR, LLCInventors: Joshua E. Auerbach, Andrew Giroux, Chris Townsend, Timothy Gerard Richter, Matthew John Sheppard
-
Publication number: 20220363369Abstract: A system of fall back flight control configured for use in aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.Type: ApplicationFiled: July 31, 2022Publication date: November 17, 2022Applicant: BETA AIR, LLCInventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
-
Patent number: 11479344Abstract: A system of fall back flight control configured for use in electric aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the electric aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.Type: GrantFiled: February 19, 2021Date of Patent: October 25, 2022Assignee: BETA AIR, LLCInventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
-
Publication number: 20220315206Abstract: In an aspect a system for fly-by-wire flight control configured for use in electric aircraft including at least a sensor, wherein the sensor is communicatively connected a pilot control and configured to detect a pilot input from the pilot control and generate, as a function of the pilot input, command datum. A system includes a flight controller, the flight controller including a computing device and configured to perform a voting algorithm, wherein performing the voting algorithm includes determining that the sensor is an allowed sensor, wherein determining that the sensor is an allowed sensor includes determining that the command datum is an active datum, determining the command datum is an admissible datum, generating, as a function of the command datum and the allowed sensor, a control surface datum wherein the control surface datum is correlated to the pilot input.Type: ApplicationFiled: October 30, 2021Publication date: October 6, 2022Applicant: BETA AIR, LLCInventors: Chris Townsend, Joshua E. Auerbach, Andrew Giroux
-
Publication number: 20220266985Abstract: A system of fall back flight control configured for use in electric aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the electric aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.Type: ApplicationFiled: February 19, 2021Publication date: August 25, 2022Applicant: BETA AIR, LLCInventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend
-
Publication number: 20220266988Abstract: A system of fall back flight control configured for use in electric aircraft includes an input control configured to receive a pilot input and generate a control datum. System includes a flight controller communicatively coupled to the input control and configured to receive the control datum and generate an output datum. The system includes the actuator having a primary mode in which the actuator is configured to move the at least a portion of the electric aircraft as a function of the output datum and a fall back mode in which the actuator is configured to move the at least a portion of the aircraft as a function of the control datum. The actuator configured to receive the control datum, receive the output datum, detect a loss of communication with the flight controller, and select the fall back mode as a function of the detection.Type: ApplicationFiled: July 1, 2021Publication date: August 25, 2022Applicant: BETA AIR, LLCInventors: Timothy Gerard Richter, Andrew Giroux, Joseph Trovato, Chris Townsend