Patents by Inventor Christian Fachmann

Christian Fachmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11869966
    Abstract: A method includes forming a trench in a first surface in an edge region of a semiconductor body, forming a plurality of superjunction transistor cells in an inner region of a semiconductor body, and forming an insulation layer on the first surface of the semiconductor body in the edge region and in the inner region, wherein forming the insulation layer includes a thermal oxidation process.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: January 9, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Franz Hirler, Winfried Kaindl, Markus Rochel
  • Publication number: 20230344422
    Abstract: A method is disclosed. The method includes switching off a power transistor circuit in an electronic circuit. The electronic circuit includes a power source and a load circuit. The power transistor circuit is connected between the power source and the load circuit. Switching off the power transistor circuit includes operating at least one power transistor included in the power transistor circuit in an Avalanche mode so that at least a portion of energy stored in the electronic circuit before switching off the power transistor circuit is dissipated in the at least one power transistor.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 26, 2023
    Inventors: Christian Fachmann, Matteo-Alessandro Kutschak, Otto Wiedenbauer, Winfried Kaindl, Hans Weber
  • Publication number: 20230268255
    Abstract: A power semiconductor device includes: a package and a plurality of power semiconductor chips, each power semiconductor chip including a semiconductor body, a first load terminal, a second load terminal and a control terminal. The device also includes a plurality of outside terminals. The outside terminals include: one or more first outside terminals electrically connected with the first load terminals; one or more second outside terminals each of which is electrically connected with each of the second load terminals; and a plurality of third outside terminals. Each control terminal is electrically connected with at least one individual third outside terminal of the plurality of third outside terminals.
    Type: Application
    Filed: February 17, 2023
    Publication date: August 24, 2023
    Inventors: Ralf Otremba, Christian Fachmann
  • Publication number: 20230238333
    Abstract: A semiconductor device includes a high-voltage semiconductor transistor chip having a front side and a backside. A low-voltage load electrode and a control electrode are disposed on the front side of the semiconductor transistor chip. The semiconductor device further includes a dielectric inorganic substrate having a first side and a second side opposite the first side. A pattern of first metal structures runs through the dielectric inorganic substrate and is connected to the low-voltage load electrode. At least one second metal structure runs through the dielectric inorganic substrate and is connected to the control electrode. The front side of the semiconductor transistor chip is attached to the first side of the dielectric inorganic substrate. The dielectric inorganic substrate has a thickness measured between the first side and the second side of at least 50 ?m.
    Type: Application
    Filed: January 20, 2023
    Publication date: July 27, 2023
    Inventors: Christian Fachmann, Barbara Angela Glanzer, Andreas Riegler
  • Publication number: 20230238294
    Abstract: A high voltage semiconductor package includes a semiconductor device. The semiconductor device includes a high voltage semiconductor transistor chip having a front side and a backside. A low voltage load electrode and a control electrode are disposed on the front side of the semiconductor transistor chip. A high voltage load electrode is disposed on the backside of the semiconductor transistor chip. The semiconductor package further includes a dielectric inorganic substrate. The dielectric inorganic substrate includes a pattern of first metal structures running through the dielectric inorganic substrate and connected to the low voltage load electrode, and at least one second metal structure running through the dielectric inorganic substrate and connected to the control electrode. The front side of the semiconductor transistor chip is attached to the dielectric inorganic substrate by a wafer bond connection, and the dielectric inorganic substrate has a thickness of at least 50 ?m.
    Type: Application
    Filed: January 20, 2023
    Publication date: July 27, 2023
    Inventors: Christian Fachmann, Barbara Angela Glanzer, Andreas Riegler
  • Patent number: 11527468
    Abstract: A connection body which comprises a base structure at least predominantly made of a semiconductor oxide material or glass material, and an electrically conductive wiring structure on and/or in the base structure, wherein the electrically conductive wiring structure comprises at least one vertical wiring section with a first lateral dimension on and/or in the base structure and at least one lateral wiring section connected with the at least one vertical wiring section, wherein the at least one lateral wiring section has a second lateral dimension on and/or in the base structure, which is different to the first lateral dimension.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: December 13, 2022
    Assignee: Infineon Technologies AG
    Inventors: Andreas Riegler, Christian Fachmann, Matteo-Alessandro Kutschak, Carsten von Koblinski, Hans Weber
  • Patent number: 11508841
    Abstract: A semiconductor device includes a semiconductor body having a first surface and second surface opposite to the first surface in a vertical direction, and a plurality of transistor cells at least partly integrated in the semiconductor body. Each transistor cell includes at least two source regions, first and second gate electrodes spaced apart from each other in a first horizontal direction and arranged adjacent to and dielectrically insulated from a continuous body region, a drift region separated from the at least two source regions by the body region, and at least three contact plugs extending from the body region towards a source electrode in the vertical direction. The at least three contact plugs are arranged successively between the first and second gate electrodes. Only the two outermost contact plugs that are arranged closest to the first and second gate electrodes, respectively, directly adjoin at least one of the source regions.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: November 22, 2022
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Franz Hirler, Christian Fachmann, Winfried Kaindl, Hans Weber
  • Publication number: 20220352048
    Abstract: A method of manufacturing semiconductor chips having a side wall sealing is described. The method includes forming dicing trenches in a semiconductor wafer. The side walls of the dicing trenches are anodized to generate an anodic oxide layer at the side walls of the dicing trenches. Semiconductor chips are separated from the semiconductor wafer.
    Type: Application
    Filed: June 18, 2020
    Publication date: November 3, 2022
    Inventors: Christian Fachmann, Ingo Muri
  • Patent number: 11329126
    Abstract: In an embodiment, a method of fabricating a superjunction semiconductor device includes implanting first ions into a first region of a first epitaxial layer using a first implanting apparatus and nominal implant conditions to produce a first region in the first epitaxial layer comprising the first ions and a first implant characteristic and implanting second ions into a second region of the first epitaxial layer, the second region being laterally spaced apart from the first region, using second nominal implanting conditions estimated to produce a second region in the first epitaxial layer having the second ions and a second implant characteristic that lies within an acceptable maximum difference of the first implant characteristic.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 10, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Tilke, Hans Weber, Christian Fachmann, Roman Knoefler, Gabor Mezoesi, Manfred Pippan, Thomas Rupp, Michael Treu, Armin Willmeroth
  • Publication number: 20220077309
    Abstract: A method includes forming a trench in a first surface in an edge region of a semiconductor body, forming a plurality of superjunction transistor cells in an inner region of a semiconductor body, and forming an insulation layer on the first surface of the semiconductor body in the edge region and in the inner region, wherein forming the insulation layer includes a thermal oxidation process.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Inventors: Hans Weber, Christian Fachmann, Franz Hirler, Winfried Kaindl, Markus Rochel
  • Publication number: 20220028699
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of patterns of metal structures in a dielectric inorganic substrate wafer. The metal structures are accommodated in recesses of the dielectric inorganic substrate wafer and at least partly connect through the dielectric inorganic substrate. The method further includes providing a semiconductor wafer comprising a front side and a backside, wherein a plurality of electrodes is disposed on the front side of the semiconductor wafer. The front side of the semiconductor wafer is bonded to the dielectric inorganic substrate wafer to form a composite wafer, wherein the plurality of patterns of metal structures is connected to the plurality of electrodes. The composite wafer is separated into composite chips.
    Type: Application
    Filed: July 20, 2021
    Publication date: January 27, 2022
    Inventors: Christian Fachmann, Barbara Angela Glanzer, Andreas Riegler
  • Publication number: 20210407746
    Abstract: A power conversion circuit includes a high-side switch and a low-side switch connected in series with one another and configured to control a load current flowing through a load, wherein at least one of the high-side switch and the low-side switch comprise a power relay circuit for switching the load current, and wherein the power relay circuit comprises a micro-electro-mechanical system switch, and a semiconductor power switch, wherein the MEMS switch and the semiconductor power switch are connected in series with the load.
    Type: Application
    Filed: September 9, 2021
    Publication date: December 30, 2021
    Inventors: Ingo Muri, Christian Fachmann
  • Patent number: 11211483
    Abstract: A method and a transistor device are disclosed. The method includes: forming a trench in a first surface in an edge region of a semiconductor body; forming an insulation layer in the trench and on the first surface of the semiconductor body; and planarizing the insulation layer so that a trench insulation layer that fills the trench remains, wherein forming the insulation layer comprises a thermal oxidation process.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 28, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Franz Hirler, Winfried Kaindl, Markus Rochel
  • Publication number: 20210335696
    Abstract: A method includes providing a processed first wafer having front and back sides and including power semiconductor dies implemented within the wafer by processing its front side, each die having a first load terminal at the front side and a second load terminal at the back side; providing an unprocessed second wafer made of an electrically insulating material and having first and second opposing sides; forming a plurality of recesses within the second wafer; filling the plurality of recesses with a conductive material; forming a stack by attaching, prior or subsequent to filling the recesses, the second wafer to the front side of the first wafer, the conductive material electrically contacting the first load terminals of the power semiconductor dies; and ensuring that the conductive material provides an electrical connection between the first side and the second side of the second wafer.
    Type: Application
    Filed: July 6, 2021
    Publication date: October 28, 2021
    Inventors: Andreas Riegler, Christian Fachmann
  • Patent number: 11139125
    Abstract: A power relay circuit for switching a load current includes a micro-electro-mechanical system (MEMS) switch and a semiconductor power switch. The MEMS switch and the semiconductor power switch are connected in series with the load current.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: October 5, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Ingo Muri, Christian Fachmann
  • Patent number: 11088275
    Abstract: A method for operating a superjunction transistor device and a transistor arrangement are disclosed. The method includes operating the superjunction transistor device in a diode state. Operating the superjunction transistor device in the diode state includes applying a bias voltage different from zero between a drift region of at least one transistor cell of the superjunction transistor device and a compensation region of a doping type complementary to a doping type of the drift region. The compensation region adjoins the drift region, and a polarity of the bias voltage is such that a pn-junction between the drift region and the compensation region is reverse biased.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: August 10, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Franz Hirler, Matteo-Alessandro Kutschak, Andreas Riegler
  • Patent number: 11081430
    Abstract: A package and a corresponding method are described. The method includes: providing a processed first wafer having front and back sides and including power semiconductor dies implemented within the wafer by processing its front side, each die having a first load terminal at the front side and a second load terminal at the back side; providing an unprocessed second wafer made of an electrically insulating material and having first and second opposing sides; forming a plurality of recesses within the second wafer; filling the plurality of recesses with a conductive material; forming a stack by attaching, prior or subsequent to filling the recesses, the second wafer to the front side of the first wafer, the conductive material electrically contacting the first load terminals of the power semiconductor dies; and ensuring that the conductive material provides an electrical connection between the first side and the second side of the second wafer.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: August 3, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Andreas Riegler, Christian Fachmann
  • Publication number: 20200388703
    Abstract: A semiconductor device includes a semiconductor body having a first surface and second surface opposite to the first surface in a vertical direction, and a plurality of transistor cells at least partly integrated in the semiconductor body. Each transistor cell includes at least two source regions, first and second gate electrodes spaced apart from each other in a first horizontal direction and arranged adjacent to and dielectrically insulated from a continuous body region, a drift region separated from the at least two source regions by the body region, and at least three contact plugs extending from the body region towards a source electrode in the vertical direction. The at least three contact plugs are arranged successively between the first and second gate electrodes. Only the two outermost contact plugs that are arranged closest to the first and second gate electrodes, respectively, directly adjoin at least one of the source regions.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 10, 2020
    Inventors: Franz Hirler, Christian Fachmann, Winfried Kaindl, Hans Weber
  • Patent number: 10811529
    Abstract: A transistor device comprises at least one gate electrode, a gate runner connected to the at least one gate electrode and arranged on top of a semiconductor body, a plurality of gate pads arranged on top of the semiconductor body, and a plurality of resistor arrangements. Each gate pad is electrically connected to the gate runner via a respective one of the plurality of resistor arrangements, and each of the resistor arrangements has an electrical resistance, wherein the resistances of the plurality of resistor arrangements are different.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: October 20, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Andreas Riegler, Christian Fachmann, Bjoern Fischer, Franz Hirler, Gabor Mezoesi, Hans Weber
  • Publication number: 20200287535
    Abstract: A method for operating a superjunction transistor device and a transistor arrangement are disclosed. The method includes operating the superjunction transistor device in a diode state. Operating the superjunction transistor device in the diode state includes applying a bias voltage different from zero between a drift region of at least one transistor cell of the superjunction transistor device and a compensation region of a doping type complementary to a doping type of the drift region. The compensation region adjoins the drift region, and a polarity of the bias voltage is such that a pn-junction between the drift region and the compensation region is reverse biased.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: Hans Weber, Christian Fachmann, Franz Hirler, Matteo-Alessandro Kutschak, Andreas Riegler