Patents by Inventor Christian Fachmann

Christian Fachmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200161062
    Abstract: A power relay circuit for switching a load current includes a micro-electro-mechanical system (MEMS) switch and a semiconductor power switch. The MEMS switch and the semiconductor power switch are connected in series with the load current.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 21, 2020
    Inventors: Ingo Muri, Christian Fachmann
  • Patent number: 10651271
    Abstract: A method for forming a field-effect semiconductor device includes providing a wafer having a substantially compensated semiconductor layer extending to an upper side and including a semiconductor material which is co-doped with n-type dopants and p-type dopants. A peripheral area laterally surrounding an active area are defined in the wafer. Trenches in the active area are filled with a substantially intrinsic semiconductor material. More p-type dopants than n-type dopants are diffused from the compensated semiconductor layer into the intrinsic semiconductor material to form a plurality of p-type compensation regions in the trenches which are separated from each other by respective n-type drift portions. P-type dopants are introduced at least into a semiconductor zone of the peripheral area, so that the semiconductor zone and a dielectric layer on the upper side form an interface. A horizontal extension of the interface is larger than a vertical extension of the trenches.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: May 12, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Daniel Tutuc, Christian Fachmann, Franz Hirler, Maximilian Treiber
  • Publication number: 20200105918
    Abstract: A method and a transistor device are disclosed. The method includes: forming a trench in a first surface in an edge region of a semiconductor body; forming an insulation layer in the trench and on the first surface of the semiconductor body; and planarizing the insulation layer so that a trench insulation layer that fills the trench remains, wherein forming the insulation layer comprises a thermal oxidation process.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 2, 2020
    Inventors: Hans Weber, Christian Fachmann, Franz Hirler, Winfried Kaindl, Markus Rochel
  • Publication number: 20200091058
    Abstract: A connection body which comprises a base structure at least predominantly made of a semiconductor oxide material or glass material, and an electrically conductive wiring structure on and/or in the base structure, wherein the electrically conductive wiring structure comprises at least one vertical wiring section with a first lateral dimension on and/or in the base structure and at least one lateral wiring section connected with the at least one vertical wiring section, wherein the at least one lateral wiring section has a second lateral dimension on and/or in the base structure, which is different to the first lateral dimension.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Inventors: Andreas Riegler, Christian Fachmann, Matteo-Alessandro Kutschak, Carsten von Koblinski, Hans Weber
  • Publication number: 20190319124
    Abstract: A transistor device comprises at least one gate electrode, a gate runner connected to the at least one gate electrode and arranged on top of a semiconductor body, a plurality of gate pads arranged on top of the semiconductor body, and a plurality of resistor arrangements. Each gate pad is electrically connected to the gate runner via a respective one of the plurality of resistor arrangements, and each of the resistor arrangements has an electrical resistance, wherein the resistances of the plurality of resistor arrangements are different.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 17, 2019
    Inventors: Andreas Riegler, Christian Fachmann, Bjoern Fischer, Franz Hirler, Gabor Mezoesi, Hans Weber
  • Patent number: 10411126
    Abstract: A semiconductor device includes an electrically conductive lead frame which includes a die pad and a plurality of electrically conductive leads, each of the leads in the plurality being spaced apart from the die pad. The semiconductor device further includes first and second integrated switching devices mounted on the die pad, each of the first and second integrated switching devices include electrically conductive gate, source and drain terminals. The source terminal of the first integrated switching device is disposed on a rear surface of the first integrated switching device that faces and electrically connects with the die pad. The drain terminal of the second integrated switching device is disposed on a rear surface of the second integrated switching device that faces and electrically connects with the die pad.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: September 10, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Andreas Riegler, Christian Fachmann, Gabor Mezoesi, Hans Weber
  • Patent number: 10374032
    Abstract: A semiconductor device includes a semiconductor body having first and second opposite sides, a drift region, a body layer at the second side, and a field-stop region in Ohmic connection with the body layer. A source metallization at the second side is in Ohmic connection with the body layer. A drain metallization at the first side is in Ohmic connection with the drift region. A gate electrode at the second side is electrically insulated from the semiconductor body to define an operable switchable channel region in the body layer. A through contact structure extends at least between the first and second sides, and includes a conductive region in Ohmic connection with the gate electrode and a dielectric layer. In a normal projection onto a horizontal plane substantially parallel to the first side, the field-stop region surrounds at least one of the drift region and the gate electrode.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: August 6, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Gabor Mezoesi, Andreas Riegler
  • Publication number: 20190157191
    Abstract: A package and a corresponding method are described. The method includes: providing a processed first wafer having front and back sides and including power semiconductor dies implemented within the wafer by processing its front side, each die having a first load terminal at the front side and a second load terminal at the back side; providing an unprocessed second wafer made of an electrically insulating material and having first and second opposing sides; forming a plurality of recesses within the second wafer; filling the plurality of recesses with a conductive material; forming a stack by attaching, prior or subsequent to filling the recesses, the second wafer to the front side of the first wafer, the conductive material electrically contacting the first load terminals of the power semiconductor dies; and ensuring that the conductive material provides an electrical connection between the first side and the second side of the second wafer.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 23, 2019
    Inventors: Andreas Riegler, Christian Fachmann
  • Publication number: 20190123137
    Abstract: A method for forming a field-effect semiconductor device includes providing a wafer having a substantially compensated semiconductor layer extending to an upper side and including a semiconductor material which is co-doped with n-type dopants and p-type dopants. A peripheral area laterally surrounding an active area are defined in the wafer. Trenches in the active area are filled with a substantially intrinsic semiconductor material. More p-type dopants than n-type dopants are diffused from the compensated semiconductor layer into the intrinsic semiconductor material to form a plurality of p-type compensation regions in the trenches which are separated from each other by respective n-type drift portions. P-type dopants are introduced at least into a semiconductor zone of the peripheral area, so that the semiconductor zone and a dielectric layer on the upper side form an interface. A horizontal extension of the interface is larger than a vertical extension of the trenches.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 25, 2019
    Inventors: Daniel Tutuc, Christian Fachmann, Franz Hirler, Maximilian Treiber
  • Patent number: 10224394
    Abstract: According to an embodiment of a semiconductor substrate, the semiconductor substrate includes a superjunction structure in a device region of a semiconductor layer and an alignment mark in a kerf region of the semiconductor layer. The superjunction structure includes first regions and second regions of opposite conductivity types, the first and the second regions alternating along at least one horizontal direction. The alignment mark includes a vertical step formed by an alignment structure projecting or recessed from a main surface of the semiconductor layer. The alignment structure is of a material of the first regions of the superjunction structure.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 5, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20190051742
    Abstract: A semiconductor device includes an electrically conductive lead frame which includes a die pad and a plurality of electrically conductive leads, each of the leads in the plurality being spaced apart from the die pad. The semiconductor device further includes first and second integrated switching devices mounted on the die pad, each of the first and second integrated switching devices include electrically conductive gate, source and drain terminals. The source terminal of the first integrated switching device is disposed on a rear surface of the first integrated switching device that faces and electrically connects with the die pad. The drain terminal of the second integrated switching device is disposed on a rear surface of the second integrated switching device that faces and electrically connects with the die pad.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 14, 2019
    Inventors: Andreas Riegler, Christian Fachmann, Gabor Mezoesi, Hans Weber
  • Publication number: 20180374919
    Abstract: In an embodiment, a method of fabricating a superjunction semiconductor device includes implanting first ions into a first region of a first epitaxial layer using a first implanting apparatus and nominal implant conditions to produce a first region in the first epitaxial layer comprising the first ions and a first implant characteristic and implanting second ions into a second region of the first epitaxial layer, the second region being laterally spaced apart from the first region, using second nominal implanting conditions estimated to produce a second region in the first epitaxial layer having the second ions and a second implant characteristic that lies within an acceptable maximum difference of the first implant characteristic.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 27, 2018
    Inventors: Armin Tilke, Hans Weber, Christian Fachmann, Roman Knoefler, Gabor Mezoesi, Manfred Pippan, Thomas Rupp, Michael Treu, Armin Willmeroth
  • Patent number: 10157982
    Abstract: A field-effect semiconductor device includes a semiconductor body having a first semiconductor region of a first conductivity type, a first side, an edge delimiting the semiconductor body in a direction substantially parallel to the first side, an active area, and a peripheral area arranged between the active area and the edge. A first metallization is arranged on the first side, and a second metallization is arranged opposite the first metallization and in Ohmic connection with the first semiconductor region. In the active area, the semiconductor body further includes: a plurality of drift portions of the first conductivity type alternating with compensation regions of a second conductivity type, the drift portions being in Ohmic connection with the first semiconductor region, the compensation regions being in Ohmic connection with the first metallization and having in a vertical direction perpendicular to the first side a vertical extension.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: December 18, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Daniel Tutuc, Christian Fachmann, Franz Hirler, Maximilian Treiber
  • Publication number: 20180294333
    Abstract: A semiconductor device includes a semiconductor body having first and second opposite sides, a drift region, a body layer at the second side, and a field-stop region in Ohmic connection with the body layer. A source metallization at the second side is in Ohmic connection with the body layer. A drain metallization at the first side is in Ohmic connection with the drift region. A gate electrode at the second side is electrically insulated from the semiconductor body to define an operable switchable channel region in the body layer. A through contact structure extends at least between the first and second sides, and includes a conductive region in Ohmic connection with the gate electrode and a dielectric layer. In a normal projection onto a horizontal plane substantially parallel to the first side, the field-stop region surrounds at least one of the drift region and the gate electrode.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 11, 2018
    Inventors: Hans Weber, Christian Fachmann, Gabor Mezoesi, Andreas Riegler
  • Publication number: 20180158901
    Abstract: According to an embodiment of a semiconductor substrate, the semiconductor substrate includes a superjunction structure in a device region of a semiconductor layer and an alignment mark in a kerf region of the semiconductor layer. The superjunction structure includes first regions and second regions of opposite conductivity types, the first and the second regions alternating along at least one horizontal direction. The alignment mark includes a vertical step formed by an alignment structure projecting or recessed from a main surface of the semiconductor layer. The alignment structure is of a material of the first regions of the superjunction structure.
    Type: Application
    Filed: February 2, 2018
    Publication date: June 7, 2018
    Inventors: Hans Weber, Christian Fachmann, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20180061937
    Abstract: A field-effect semiconductor device includes a semiconductor body having a first semiconductor region of a first conductivity type, a first side, an edge delimiting the semiconductor body in a direction substantially parallel to the first side, an active area, and a peripheral area arranged between the active area and the edge. A first metallization is arranged on the first side, and a second metallization is arranged opposite the first metallization and in Ohmic connection with the first semiconductor region. In the active area, the semiconductor body further includes: a plurality of drift portions of the first conductivity type alternating with compensation regions of a second conductivity type, the drift portions being in Ohmic connection with the first semiconductor region, the compensation regions being in Ohmic connection with the first metallization and having in a vertical direction perpendicular to the first side a vertical extension.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 1, 2018
    Inventors: Daniel Tutuc, Christian Fachmann, Franz Hirler, Maximilian Treiber
  • Patent number: 9905639
    Abstract: By using a single trench mask, first and second trenches are formed that extend from a main surface into a semiconductor layer. A foundation is formed that includes first regions in and/or directly adjoining the first trenches. A superstructure is formed in alignment with the foundation by using position information directly obtained from structures formed in the first and/or the second trenches.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: February 27, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Daniel Tutuc, Andreas Voerckel
  • Patent number: 9812373
    Abstract: An electronic module includes a semiconductor package including a semiconductor chip and an electrically insulating encapsulation body encapsulating the semiconductor chip, the encapsulation body completely covering a second main face and four side faces of the semiconductor chip, wherein a first main face of the semiconductor chip that is opposite the first main face is exposed from the encapsulation body, a heat spreader attached to the semiconductor package, the heat spreader completely covering the first main face of the semiconductor chip, and an electrically insulating layer disposed on the heat spreader remote from the semiconductor package. The electrically insulating layer is completely separated from the semiconductor chip.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: November 7, 2017
    Assignee: Infineon Technologies AG
    Inventors: Christian Fachmann, Ralf Otremba, Klaus Schiess, Franz Stueckler
  • Patent number: 9773736
    Abstract: A method of forming a metallization layer over a semiconductor substrate includes depositing a blanket layer of a diffusion barrier liner over an inter level dielectric layer, and depositing a blanket layer of an intermediate layer over the diffusion barrier liner. A blanket layer of a power metal layer including copper is deposited over the intermediate layer. The intermediate layer includes a solid solution of a majority element and copper. The intermediate layer has a different etch selectivity from the power metal layer. After depositing the power metal layer, structuring the power metal layer, the intermediate layer, and the diffusion barrier liner.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: September 26, 2017
    Assignee: Infineon Technologies AG
    Inventors: Ravi Keshav Joshi, Juergen Steinbrenner, Christian Fachmann, Petra Fischer, Roman Roth
  • Patent number: 9679895
    Abstract: A semiconductor device includes a semiconductor substrate having an outer rim, a plurality of switchable cells defining an active area, and an edge termination region arranged between the switchable cells and the outer rim. Each of the switchable cells includes a gate electrode structure. The semiconductor device further includes a gate metallization in contact with the gate electrode structure. The active area includes at least a first switchable region having a first specific transconductance and at least a second switchable region having a second specific transconductance which is different from the first specific transconductance. The second switchable region is arranged between the gate metallization and the first switchable region. A ratio of the area of the second switchable region to the total area of the switchable regions is in a range from 5% to 50%.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: June 13, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Christian Fachmann, Enrique Vecino Vazquez, Armin Willmeroth