Patents by Inventor Christian S. Nielsen
Christian S. Nielsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12246903Abstract: An apparatus having a foil pack defining a device enclosure and a fluid conduit defining a fluid channel. The device enclosure may be configured to hold an energy storage device such as a battery or capacitor. The fluid conduit defines a fluid channel configured to allow a flow from the device enclosure through a test port defined by the fluid conduit. The apparatus is configured to establish a vacuum in the device enclosure when a vacuum is established in the fluid channel (e.g., during leak testing of the device enclosure). A scaffolding within the fluid conduit is configured to configured to resist a collapse of the fluid channel when the vacuum is established in the fluid channel.Type: GrantFiled: November 1, 2021Date of Patent: March 11, 2025Assignee: Medtronic, Inc.Inventors: Christian S. Nielsen, Timothy T. Bomstad, Lance B. Lohstreter, John D. Norton, Mark E. Viste, Paul B. Young
-
Publication number: 20250001191Abstract: Various embodiments of a power source and an implantable medical device that includes such power source are disclosed. The power source extends along a longitudinal axis between a first end and a second end of the power source. The power source further includes an outer housing extending along the longitudinal axis; an inner housing disposed at least partially within the outer housing and electrically isolated from the outer housing, where the inner housing extends along the longitudinal axis; and a passageway defined by an inner surface of the inner housing. The passageway extends between the first end and the second end of the power source.Type: ApplicationFiled: June 26, 2024Publication date: January 2, 2025Inventor: Christian S. Nielsen
-
Patent number: 12170352Abstract: Separator and electrolyte composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries and electrochemical cells are disclosed that include the described separator and electrolyte composites in combination with an anode and a cathode.Type: GrantFiled: August 11, 2022Date of Patent: December 17, 2024Assignee: Medtronic, Inc.Inventors: Hui Ye, Timothy T. Bomstad, Parthasarathy M. Gomadam, Gaurav Jain, Christian S. Nielsen, Prabhakar A. Tamirisa, Collette M. Vanelzen
-
Patent number: 12133936Abstract: A surgical device configured to surround an implantable medical device that includes a collagen membrane and a coating embedded in the membrane, the coating including at least one active pharmaceutical ingredient.Type: GrantFiled: January 6, 2021Date of Patent: November 5, 2024Assignee: Medtronic, IncInventors: Christian S. Nielsen, Sean Chen, Anne R. Kamm, Paul C. Ray
-
Patent number: 11957894Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: GrantFiled: August 25, 2020Date of Patent: April 16, 2024Assignee: Medtronic, Inc.Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
-
Patent number: 11957893Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: GrantFiled: August 25, 2020Date of Patent: April 16, 2024Assignee: Medtronic, Inc.Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
-
Patent number: 11944825Abstract: A method of manufacturing a surgical device including providing a substrate having opposite first and second sides. The second side having a first section and a second section. Coupling a substrate to a fixture such that the first side faces the fixture and depositing a gel onto the second side such that the gel coats the first section without coating the second section.Type: GrantFiled: January 6, 2021Date of Patent: April 2, 2024Assignee: Medtronic, IncInventors: Christian S. Nielsen, Raman Bahulekar
-
Patent number: 11896830Abstract: Various embodiments of a hermetically-sealed package and a method of forming such package are disclosed. The package includes a housing that extends along a housing axis between a first end and a second end, where the housing includes first and second opaque portions and a transparent portion disposed between the first and second opaque portions. The first opaque portion is hermetically sealed to a first end of the transparent portion and the second opaque portion is hermetically sealed to a second end of the transparent portion. At least one of the first and second opaque portions is hermetically sealed to the transparent portion by a weld ring. The package further includes a power source disposed within the housing, and an inductive coil disposed at least partially within the transparent portion of the housing and electrically connected to the power source.Type: GrantFiled: February 2, 2021Date of Patent: February 13, 2024Assignee: Medtronic, Inc.Inventors: Andrew J. Thom, Rajesh V. Iyer, Gordon O. Munns, Christian S. Nielsen, Andrew J. Ries
-
Patent number: 11813470Abstract: Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable devices in some examples include a multi-axis antenna having a plurality of coil windings arranged orthogonal to one another. The multi-axis antenna configured to generate at least a minimum level of induced current for recharging a power source of the implanted medical device regardless of the orientation of a direction of a magnetic field imposed on the multi-axis antenna relative to an orientation of the implanted medical device and the multi-axis antenna for a given energy level of the imposed magnetic field.Type: GrantFiled: September 21, 2020Date of Patent: November 14, 2023Assignee: Medtronic, Inc.Inventors: Rajesh V. Iyer, Gordon O. Munns, Christian S. Nielsen, Craig L. Schmidt, Paul B. Young
-
Patent number: 11793998Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: GrantFiled: August 25, 2020Date of Patent: October 24, 2023Assignee: Medtronic, Inc.Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, Eric H. Bonde, Erik R. Scott, Gabriela C. Molnar, Gordon O. Munns, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Thomas P. Miltich, Todd V. Smith, Xuan K. Wei
-
Patent number: 11730948Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: GrantFiled: August 25, 2020Date of Patent: August 22, 2023Assignee: Medtronic, Inc.Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
-
Patent number: 11730947Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.Type: GrantFiled: August 25, 2020Date of Patent: August 22, 2023Assignee: Medtronic, Inc.Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
-
Patent number: 11672969Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.Type: GrantFiled: August 25, 2020Date of Patent: June 13, 2023Assignee: Medtronic, Inc.Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
-
Publication number: 20230173764Abstract: A method of forming an implant includes positioning a first mesh component of the implant within a second mesh component of the implant to form an implant assembly. The implant assembly is manipulated to join the first mesh component with the second mesh component.Type: ApplicationFiled: December 8, 2021Publication date: June 8, 2023Applicant: MEDTRONIC INC.Inventors: CHRISTIAN S. NIELSEN, Sean Chen, Kasyap V. Kasyap Seethamraju
-
Patent number: 11647600Abstract: Various embodiments of a sealed package and a method of forming such package are disclosed. The package includes a housing having an inner surface and an outer surface, a dielectric substrate having a first major surface and a second major surface, and a dielectric bonding ring disposed between the first major surface of the dielectric substrate and the housing, where the dielectric bonding ring is hermetically sealed to both the first major surface of the dielectric substrate and the housing. The package further includes an electronic device disposed on the first major surface of the dielectric substrate, and a power source disposed at least partially within the housing and electrically connected to the electronic device.Type: GrantFiled: December 29, 2020Date of Patent: May 9, 2023Assignee: Medtronic, Inc.Inventors: Christian S. Nielsen, Rajesh V. Iyer, Gordon O. Munns, Andrew J. Ries, Andrew J. Thom
-
Patent number: 11628305Abstract: Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The recharging system/device in some examples includes a first electrical coil and a second electrical coil configured to generate opposing magnetic fields forming a resultant magnetic field within a recharging envelope located between the coils. A third coil of the implantable medical device may be positioned within the recharging envelope so that the resultant magnetic field is imposed on the third coil, causing electrical energy to be induced in the third coil, the induced electrical energy used to recharge a power source of an implantable medical device coupled to the third coil, and/or to power operation of the implantable medical device.Type: GrantFiled: October 8, 2021Date of Patent: April 18, 2023Assignee: Medtronic, Inc.Inventors: Christian S. Nielsen, Rajesh V. Iyer, Gordon O. Munns, Craig L. Schmidt, Paul B. Young
-
Patent number: 11617879Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.Type: GrantFiled: December 26, 2018Date of Patent: April 4, 2023Assignee: Medtronic, Inc.Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Réitérer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
-
Publication number: 20230024041Abstract: Separator and electrolyte composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries include the described separator and electrolyte composites in combination with an anode and a cathode.Type: ApplicationFiled: August 11, 2022Publication date: January 26, 2023Inventors: Hui Ye, Timothy T. Bomstad, Parthasarathy M. Gomadam, Gaurav Jain, Christian S. Nielsen, Prabhakar A. Tamirisa, Collette M. Vanelzen
-
Patent number: 11437649Abstract: Separator and electrolyte composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries include the described separator and electrolyte composites in combination with an anode and a cathode.Type: GrantFiled: May 23, 2019Date of Patent: September 6, 2022Assignee: Medtronic, Inc.Inventors: Hui Ye, Timothy T. Bomstad, Parthasarathy M. Gomadam, Gaurav Jain, Christian S. Nielsen, Prabhakar A. Tamirisa, Collette M. VanElzen
-
Publication number: 20220211922Abstract: A surgical device configured to surround an implantable medical device that includes a collagen membrane and a coating embedded in the membrane The coating including at least one active pharmaceutical ingredient.Type: ApplicationFiled: January 6, 2021Publication date: July 7, 2022Applicant: MEDTRONIC INC.Inventors: Christian S. Nielsen, Sean Chen, Anne R. Kamm, Paul C. Ray