Patents by Inventor Christian S. Nielsen

Christian S. Nielsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160141718
    Abstract: Separator and electrolyte composites are disclosed. The composites include a porous self-supporting separator film between or adjacent one or two electrolyte films. The electrolyte films may contain a glyme or mixture of glymes, LiX salt and complexing agent, such as PEO. The porous self-supporting separator film may be used dry or wetted with a liquid electrolyte composition. Solid state batteries using the described separator and electrolyte composites in combination with an anode and a cathode are also disclosed.
    Type: Application
    Filed: November 11, 2015
    Publication date: May 19, 2016
    Inventors: Hui YE, Timothy T. BOMSTAD, Parthasarathy M. GOMADAM, Gaurav JAIN, Christian S. NIELSEN, Prabhakar A. TAMIRISA, Collette M. VANELZEN
  • Publication number: 20150375006
    Abstract: A method for delivering optical stimulation comprises transfecting a target tissue with a light-sensitive channel protein sensitive to light in a wavelength range, delivering light in the wavelength range to the target tissue via an optical stimulation device, substantially simultaneously with delivering light to the target tissue, sensing bioelectric signals, determining a patient therapeutic state based on the bioelectric signals, and adjusting the delivery of the light to the target tissue based on the sensed patient therapeutic state.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 31, 2015
    Inventors: Timothy J. Denison, Kunal Paralikar, Gordon Orvis Munns, Wesley A. Santa, Peng Cong, Christian S. Nielsen, John D. Norton, John G. Keimel
  • Publication number: 20150306415
    Abstract: An implantable active medical device system includes an active medical device and a lead extending between a proximal portion electrically coupled to the active medical device and a distal end portion configured to emit light. The distal end portion includes a solid state light source disposed within a light transmissive ring element. The light transmissive ring element forms an exterior segment of the distal end portion. The light transmissive ring element defines at least a portion of a hermetic cavity.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 29, 2015
    Inventors: Brad C. Tischendorf, Gordon O. Munns, Christian S. Nielsen, John D. Norton, Markus W. Reiterer, Andrew J. Thom, Kunal J. Paralikar
  • Publication number: 20150306414
    Abstract: An implantable active medical device includes a housing defining a hermetic cavity, a lead connector receptacle extending into the implantable active medical device, and a solid state light source disposed within the hermetic cavity and optically coupled to the lead connector receptacle.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 29, 2015
    Inventors: Christian S. Nielsen, Kunal J. Paralikar, Brad C. Tischendorf, John D. Norton, Markus W. Reiterer, Andrew J. Thom, Gordon O. Munns
  • Patent number: 8936630
    Abstract: Methods of delivering optical stimulation to a target tissue from an optical stimulation device are provided. One method comprises sensing a temperature at the optical stimulation device or proximate to the optical stimulation device, and adjusting the delivery of light to the target tissue based on the sensed temperature. Another method comprises delivering the light to the target tissue with an optical light guide and sensing bioelectric signals with a sense electrode, wherein the optical light guide and the sense electrode each comprise a material that produces substantially no induced current in an electromagnetic field. Another method comprises delivering light from a light source of an optical stimulation device to a window of the optical stimulation device, delivering the light from the window to an optical light guide optically connected to the window, and delivering the light to a target tissue via the optical light guide.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: January 20, 2015
    Assignee: Medtronic, Inc.
    Inventors: Timothy J. Denison, Kunal Paralikar, Gordon O. Munns, Wesley A. Santa, Peng Cong, Christian S. Nielsen, John D. Norton
  • Patent number: 8848340
    Abstract: An energy storage device includes a first conductor having a first surface and a second surface. The energy storage device also includes a second conductor and a separator assembly that encloses the first conductor and that is disposed between the first and second conductors. The separator assembly also includes a first portion that covers the first surface and a second portion that covers the second surface. The first and second portions are attached to one another, and at least one of the first and second portions includes a first sheet and a second sheet that are attached to one another. The first sheet includes a first material, and the second sheet includes a second material that is different from the first material.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 30, 2014
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Frank T. Greenwald
  • Patent number: 8785036
    Abstract: Electrochemical device and method for assembling an electrochemical device. The electrochemical device has an electrochemical module and an enclosure configured to enclose the electrochemical module. The enclosure has a first housing portion forming a first rim and being an insulative material and a second housing portion forming a second rim and being the insulative material, the first housing portion and the second housing portion at least partially forming, when the first rim substantially abuts the second rim, a volume configured to enclose the electrochemical device. The enclosure further has a crimp ring engaging the first rim and the second rim, the crimp ring securing the first housing portion with respect to the second housing portion and a grommet positioned between and contacting the first rim and the second rim. The enclosure is substantially sealed.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 22, 2014
    Assignee: Medtronic, Inc.
    Inventor: Christian S. Nielsen
  • Patent number: 8774915
    Abstract: Capacitor packaging according to the disclosure provides advantages particularly in connection to compact and/or complex-shaped medical devices (e.g., having limited interior volume defined by domed and/or irregular exterior surfaces). In addition, capacitors of the type shown and described herein can be utilized in relatively compact external defibrillators, such as automatic external defibrillators or clinician-grade, automated or manually-operated external defibrillators. In one form a plurality of capacitors having substantially flat exterior surfaces are placed in an abutting relationship between at least a pair of major surfaces and the major surfaces are spaced from an opposing or adjacent surface in a non-parallel configuration. In other forms, one or more exterior surface portions have a common and/or complex radius dimension (i.e., the surfaces are curved).
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: July 8, 2014
    Assignee: Medtronic, Inc.
    Inventors: Craig L. Schmidt, William L. Johnson, Steven Joseph May, Christian S. Nielsen, John Daniel Norton, Anthony W. Rorvick, Jeffrey A. Swanson, William K. Wenger
  • Publication number: 20140163646
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer enclosure member surrounds the joint and circumscribes the housing in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 12, 2014
    Applicant: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Publication number: 20140123476
    Abstract: Miniature electrodes and electrochemical cells are disclosed. Such electrodes are made from forming an electrode mixture onto a current collector and distal end of a feedthrough pin such that the current collector and distal end of the feedthrough pin is encapsulated. The methods and electrode assemblies disclosed herein allow such electrode assemblies to be made free from the step of directly attaching a formed electrode to a feedthrough pin and thus simplifying assembly and decreasing size.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Inventors: Hailiang Zhao, Christian S. Nielsen
  • Publication number: 20140120413
    Abstract: Electrochemical device and method for assembling an electrochemical device. The electrochemical device has an electrochemical module and an enclosure configured to enclose the electrochemical module. The enclosure has a first housing portion forming a first rim and being an insulative material and a second housing portion forming a second rim and being the insulative material, the first housing portion and the second housing portion at least partially forming, when the first rim substantially abuts the second rim, a volume configured to enclose the electrochemical device. The enclosure further has a crimp ring engaging the first rim and the second rim, the crimp ring securing the first housing portion with respect to the second housing portion and a grommet positioned between and contacting the first rim and the second rim. The enclosure is substantially sealed.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Inventor: Christian S. Nielsen
  • Publication number: 20140120412
    Abstract: Electrochemical device and method. The electrochemical device has an electrochemical module and an enclosure configured to enclose the electrochemical module. The enclosure has an electrically conductive first housing portion forming a first rim and an electrically conductive second housing portion forming a second rim, the first housing portion and the second housing portion, when the first rim of the first housing portion substantially abuts the second rim of the second housing portion, forming, at least in part, a volume configured to enclose the electrochemical device. The enclosure further has a substantially non-conductive grommet positioned between the first rim and the second rim, and a crimp ring engaging the first rim and the second rim, the crimp ring being configured to secure the first housing portion with respect to the second housing portion. The grommet is further positioned between the crimp ring and the first rim and the second rim.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Inventor: Christian S. Nielsen
  • Publication number: 20130196231
    Abstract: A battery may include a first electrode and a second electrode. In some examples, the first electrode may include a metal substrate including a major surface, where a plurality of tunnels extend into the major surface, and an electrode composition is deposited onto the major surface of the metal substrate, where a portion of the electrode composition is positioned within the plurality of tunnels. The battery may be positioned within a housing of an implantable medical device (IMD).
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: MEDTRONIC, INC.
    Inventor: Christian S. Nielsen
  • Patent number: 8451015
    Abstract: A method of testing an electrical component includes coupling the electrical component to at least a first probe, a second probe, and a third probe. The probes are in communication with a test control module. Furthermore, the method includes confirming that the probes are in sufficient electrical connection with the electrical component by allowing the test control module to supply a current through the electrical component via the first probe and the third probe, and simultaneously detecting a potential difference across the electrical component by the second probe and the third probe. Furthermore, the method includes testing a performance characteristic of the electrical component by supplying a redundant signal to the electrical component via at least two of the first probe, the second probe, and the third probe.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: May 28, 2013
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Patent number: 8376206
    Abstract: A cold weld is formed in a multilayer-material. A first pin is coupled to a first block. A second pin is coupled to a second block. The multilayer material is disposed between the first pin and the second pin. The first pin opposes the second pin. The multilayer material is held in the XY plane and floats in the Z axis.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 19, 2013
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Anthony M. Chasensky
  • Publication number: 20120250223
    Abstract: An energy storage device includes a first conductor having a first surface and a second surface. The energy storage device also includes a second conductor and a separator assembly that encloses the first conductor and that is disposed between the first and second conductors. The separator assembly also includes a first portion that covers the first surface and a second portion that covers the second surface. The first and second portions are attached to one another, and at least one of the first and second portions includes a first sheet and a second sheet that are attached to one another. The first sheet includes a first material, and the second sheet includes a second material that is different from the first material.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 4, 2012
    Applicant: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Frank T. Greenwald
  • Patent number: 8199459
    Abstract: An energy storage device includes a first conductor having a first surface and a second surface. The energy storage device also includes a second conductor and a separator assembly that encloses the first conductor and that is disposed between the first and second conductors. The separator assembly also includes a first portion that covers the first surface and a second portion that covers the second surface. The first and second portions are attached to one another, and at least one of the first and second portions includes a first sheet and a second sheet that are attached to one another. The first sheet includes a first material, and the second sheet includes a second material that is different from the first material.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Frank T. Greenwald
  • Publication number: 20120125978
    Abstract: A cold weld is formed in a multilayer-material. A first pin is coupled to a first block. A second pin is coupled to a second block. The multilayer material is disposed between the first pin and the second pin. The first pin opposes the second pin. The multilayer material is held in the XY plane and floats in the Z axis.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 24, 2012
    Applicant: Medtronic, Inc.
    Inventors: Christian S. NIELSEN, Timothty T. BOMSTAD, Anthony M. CHASENSKY
  • Patent number: 8179663
    Abstract: A capacitor is presented that includes a housing, an electrode assembly, a liner, and a fill port. The liner is located between the housing and the electrode assembly. The liner includes a recessed portion. A fill port extends through the housing across from the recessed portion in the liner. A gap is formed between the recessed portion and the fill port.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: May 15, 2012
    Assignee: Medtronic, Inc.
    Inventors: Leo J. Brabeck, Jeffrey D. Chaput, Thomas M. Henderson, Thomas W. Kanitz, Jeffrey J. Louwagie, Christian S. Nielsen, Walter C. Sunderland
  • Publication number: 20120107672
    Abstract: Miniature electrodes and electrochemical cells are disclosed. Such electrodes are made from forming an electrode mixture onto a current collector and distal end of a feedthrough pin such that the current collector and distal end of the feedthrough pin is encapsulated. The methods and electrode assemblies disclosed herein allow such electrode assemblies to be made free from the step of directly attaching a formed electrode to a feedthrough pin and thus simplifying assembly and decreasing size.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventors: Hailiang Zhao, Christian S. Nielsen