Patents by Inventor Christian S. Nielsen

Christian S. Nielsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7519261
    Abstract: An optical feedthrough assembly is provided that is configured to be disposed through the canister of an implantable medical device. The optical feedthrough assembly comprises a ferrule having an aperture therethrough and an inner surface therethrough. An optical fiber passes through the aperture, and a compression seal stack is disposed within the aperture and around the optical fiber. The compression seal stack sealingly engages the optical fiber and the inner surface.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: April 14, 2009
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Publication number: 20080304209
    Abstract: A capacitor is presented that includes a housing, an electrode assembly, a liner, and a fill port. The liner is located between the housing and the electrode assembly. The liner includes a recessed portion. A fill port extends through the housing across from the recessed portion in the liner. A gap is formed between the recessed portion and the fill port.
    Type: Application
    Filed: May 5, 2008
    Publication date: December 11, 2008
    Inventors: Leo J. Brabeck, Jeffrey D. Chaput, Thomas M. Henderson, Thomas W. Kanitz, Jeffrey J. Louwagie, Christian S. Nielsen, Walter C. Sunderland
  • Publication number: 20080292958
    Abstract: An insulative feedthrough receives an electrical lead therethrough and includes a ferrule having first and second open ends and an interior surface. At least one polymeric guide member is positioned substantially within the first end of the ferrule and has an aperture therethrough for receiving the lead. An insulating material is deposited in the ferrule through the second end for sealingly engaging the lead and the interior surface of the ferrule.
    Type: Application
    Filed: February 27, 2008
    Publication date: November 27, 2008
    Inventors: CHRISTIAN S. NIELSEN, Timothy T. Bomstad
  • Publication number: 20080152283
    Abstract: An optical feedthrough assembly is provided that is configured to be disposed through the canister of an implantable medical device. The optical feedthrough assembly comprises a ferrule having an aperture therethrough and an inner surface therethrough. An optical fiber passes through the aperture, and a compression seal stack is disposed within the aperture and around the optical fiber. The compression seal stack sealingly engages the optical fiber and the inner surface.
    Type: Application
    Filed: February 27, 2008
    Publication date: June 26, 2008
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Patent number: 7349618
    Abstract: An optical feedthrough assembly is provided that is configured to be disposed through the canister of an implantable medical device. The optical feedthrough assembly comprises a ferrule having an aperture therethrough and an inner surface therethrough. An optical fiber passes through the aperture, and a compression seal stack is disposed within the aperture and around the optical fiber. The compression seal stack sealingly engages the optical fiber and the inner surface.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: March 25, 2008
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Patent number: 7348097
    Abstract: An insulative feedthrough receives an electrical lead therethrough and includes a ferrule having fist and second open ends and an interior surface. At least one polymeric guide member is positioned substantially within the first end of the ferrule and has an aperture therethrough for receiving the lead. An insulating material is deposited in the ferrule through the second end for sealingly engaging the lead and the interior surface of the ferrule.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: March 25, 2008
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Patent number: 6995971
    Abstract: The present invention relates generally to capacitor cells and the utilization of separator materials that interact with one or more surfactants in such cells. More specifically, the present invention is related to capacitor cells that include separators that are impregnated with a surfactant or that absorb and/or interact with a surfactant that is included in an electrolyte placed within the capacitor cell.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: February 7, 2006
    Assignee: Medtronic, Inc.
    Inventors: John D. Norton, Anthony W. Rorvick, Christian S. Nielsen
  • Patent number: 6922330
    Abstract: Implantable medical devices (IMDs) and components, including flat electrolytic capacitors and methods of making and using same, particularly an improved electrolytic capacitor fabricated of an electrode stack assembly comprising a plurality of capacitor layers stacked in registration upon one another. Each capacitor layer comprises a valve metal cathode layer having a cathode tab, a valve metal anode layer having an anode tab, and a separator layer located between the cathode layers. The anode layer is assembled from a plurality of valve metal anode sheets that are etched and anodized, stacked side-by-side, and electrically and mechanically joined together by laser weld beads. A valve metal anode tab having a thickness equal to one or more anode sheet is inserted into a tab notch in one or more stacked anode sheet and joined to the anode sheet stack by laser welding the tab and sheet edges together.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: July 26, 2005
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Thomas P. Miltich, Mark D. Breyen, Paul B. Young
  • Patent number: 6836683
    Abstract: Implantable medical devices (IMDs) and their various components, including flat electrolytic capacitors for same, and methods of making and using same, particularly an improved electrolytic capacitor fabricated of an electrode stack assembly comprising a plurality of capacitor layers stacked in registration upon one another. Each capacitor layer comprises a cathode layer having a cathode tab, an anode layer having an anode tab, and a separator layer located between adjacent anode and cathode layers. The anode layer is fabricated of side-by-side stacked anode sheets joined together by at least one malleable member that is fitted into substantially aligned anode sheet bores extending through each sheet and expanded therein to bear against the valve metal core layer of the anode sheets exposed by the bores to effect electrical and mechanical connection of the anode sheets and the anode tab.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: December 28, 2004
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Publication number: 20040258988
    Abstract: An insulative feedthrough receives an electrical lead therethrough and includes a ferrule having fist and second open ends and an interior surface. At least one polymeric guide member is positioned substantially within the first end of the ferrule and has an aperture therethrough for receiving the lead. An insulating material is deposited in the ferrule through the second end for sealingly engaging the lead and the interior surface of the ferrule.
    Type: Application
    Filed: June 17, 2003
    Publication date: December 23, 2004
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Publication number: 20040260354
    Abstract: A miniature insulative feedthrough receives an electrical lead therethrough and includes a ferrule having first and second open ends and an interior surface. At least a first insulating ring is positioned within the ferrule and has an aperture therethrough for receiving the electrical lead. At least one compression ring is positioned within the ferrule for sealingly engaging the interior surface, the compression ring also having an aperture therethrough for receiving the electrical lead. First and second retaining portions are provided for maintaining the insulating ring and the compression ring in position within the ferrule.
    Type: Application
    Filed: June 17, 2003
    Publication date: December 23, 2004
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Publication number: 20040240153
    Abstract: A capacitor structure comprises a shallow drawn encasement having first and second major sides and a peripheral wall coupled to first and second major sides. First and second anodes are positioned within encasement proximate the interior surfaces of the first and second major sides respectively. A cathode is positioned within the encasement intermediate the first and second anodes.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 2, 2004
    Inventors: Christian S. Nielsen, Mark Edward Viste, Anthony W. Rorvick, David P. Haas, Joachim Hossick-Schott, John D. Norton, Tim T. Bomstad, Kurt J. Casby
  • Publication number: 20040240156
    Abstract: The present invention relates generally to capacitor cells and the utilization of separator materials that interact with one or more surfactants in such cells. More specifically, the present invention is related to capacitor cells that include separators that are impregnated with a surfactant or that absorb and/or interact with a surfactant that is included in an electrolyte placed within the capacitor cell.
    Type: Application
    Filed: July 18, 2003
    Publication date: December 2, 2004
    Inventors: John D. Norton, Anthony W. Rorvick, Christian S. Nielsen
  • Patent number: 6819544
    Abstract: A capacitor structure having a shallow drawn encasement includes first and second major sides and a peripheral wall coupled to first and second major sides. First and second anodes are positioned within the encasement proximate the interior surfaces of the first and second major sides respectively. A cathode is positioned within the encasement intermediate the first and second anodes.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: November 16, 2004
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Mark Edward Viste, Anthony W. Rorvick, David P. Haas, Joachim Hossick-Schott, John D. Norton, Tim T. Bomstad, Kurt J. Casby
  • Patent number: 6807048
    Abstract: A capacitor structure comprises a shallow drawn encasement having first and second major sides and a peripheral wall coupled to the first and second sides. A cathode is disposed within the encasement proximate the first and second major sides, the cathode having a cathode lead. A central anode a having an anode lead is disposed within the encasement, and a bipolar, insulative feedthrough extends through the encasement through which electrical coupling may be made to the anode lead and the cathode lead.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: October 19, 2004
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Mark Edward Viste, Anthony W. Rorvick, David P. Haas, Joachim Hossick-Schott, John D. Norton, Tim T. Bomstad, Kurt J. Casby, William John Taylor
  • Patent number: 6801424
    Abstract: A capacitor structure comprises a shallow drawn case having a first major side and a peripheral wall extending therefrom, the first major side having a first interior surface and the wall having a peripheral interior surface. A lid is sealingly coupled to the case along adjacent edges of the lid and the wall, the lid and said case forming an encasement of the capacitor structure, the lid comprising a second interior surface. A cathode material is disposed proximate the first and second interior surfaces, and an anode is positioned intermediate the cathode material and has a peripheral portion positioned proximate the adjacent edges. A protective layer on the peripheral portion protects the anode during the sealing process. A first insulative separator is positioned between the anode and the cathode material.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: October 5, 2004
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Mark Edward Viste, Anthony W. Rorvick, David P. Haas, Joachim Hossick-Schott, John D. Norton, Timothy T. Bomstad, Kurt J. Casby
  • Patent number: 6648928
    Abstract: Implantable medical devices (IMDs) and their various components, particularly a simplified, miniature capacitor connector block and wiring harness utilizing an epoxy droplet and method of making same are disclosed. An electrode stack comprises a plurality of capacitor layers stacked in registration upon one another, each capacitor layer comprising a cathode layer having a cathode tab, an anode sub-assembly comprising at least one anode layer having an anode tab, and a separator layer located between adjacent anode and cathode layers. A connector assembly is electrically attached to the anode connection terminal for making electrical connection with anode tabs and to the cathode connection terminal for making electrical connection with cathode tabs. The connector block is formed on an encapsulation area of a case side wall of epoxy that is cured for a period of time under elevated temperature conditions while rotating the capacitor assembly.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: November 18, 2003
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Mark D. Breyen, Thomas P. Miltich, Michael E. Clarke, Anthony W. Rorvick
  • Publication number: 20030199942
    Abstract: Implantable medical devices (IMDs) and their various components, including flat electrolytic capacitors for same, and methods of making and using same, particularly an improved electrolytic capacitor fabricated of an electrode stack assembly comprising a plurality of capacitor layers stacked in registration upon one another. Each capacitor layer comprises a cathode layer having a cathode tab, an anode layer having an anode tab, and a separator layer located between adjacent anode and cathode layers. The anode layer is fabricated of side-by-side stacked anode sheets joined together by at least one malleable member that is fitted into substantially aligned anode sheet bores extending through each sheet and expanded therein to bear against the valve metal core layer of the anode sheets exposed by the bores to effect electrical and mechanical connection of the anode sheets and the anode tab.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Inventors: Christian S. Nielsen, Timothy T. Bomstad
  • Publication number: 20030199941
    Abstract: Implantable medical devices (IMDs) and components, including flat electrolytic capacitors and methods of making and using same, particularly an improved electrolytic capacitor fabricated of an electrode stack assembly comprising a plurality of capacitor layers stacked in registration upon one another. Each capacitor layer comprises a valve metal cathode layer having a cathode tab, a valve metal anode layer having an anode tab, and a separator layer located between the cathode layers. The anode layer is assembled from a plurality of valve metal anode sheets that are etched and anodized, stacked side-by-side, and electrically and mechanically joined together by laser weld beads. A valve metal anode tab having a thickness equal to one or more anode sheet is inserted into a tab notch in one or more stacked anode sheet and joined to the anode sheet stack by laser welding the tab and sheet edges together.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Inventors: Christian S. Nielsen, Thomas P. Miltich, Mark D. Breyen, Paul B. Young
  • Publication number: 20030011967
    Abstract: Implantable medical devices (IMDs) and their various components, particularly a simplified, miniature capacitor connector block and wiring harness utilizing an epoxy droplet and method of making same are disclosed. An electrode stack comprises a plurality of capacitor layers stacked in registration upon one another, each capacitor layer comprising a cathode layer having a cathode tab, an anode sub-assembly comprising at least one anode layer having an anode tab, and a separator layer located between adjacent anode and cathode layers. A connector assembly is electrically attached to the anode connection terminal for making electrical connection with anode tabs and to the cathode connection terminal for making electrical connection with cathode tabs. The connector block is formed on an encapsulation area of a case side wall of epoxy that is cured for a period of time under elevated temperature conditions while rotating the capacitor assembly.
    Type: Application
    Filed: April 30, 2002
    Publication date: January 16, 2003
    Applicant: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Mark D. Breyen, Thomas P. Miltich, Michael E. Clarke, Anthony W. Rorvick