Patents by Inventor Christian Schmidt

Christian Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10743184
    Abstract: Certain features relate to unequal distribution of transmitters and receivers in a distributed antenna system (DAS). Remote units in the DAS can be configured as transmitting remote units, receiving remote units, or remote transceiver units that can transmit and receive wireless signals. In some configurations, the DAS can be configured with a greater number of transmitting remote units than receiving remote units. In other configurations, the DAS can be configured with a greater number of receiving remote units. In some aspects, unequal distribution of transmitters and receivers can be obtained by allocation of transmission frequencies and receiver frequencies in the DAS.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: August 11, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Nelson Christian Schmidt, Van E. Hanson
  • Patent number: 10676569
    Abstract: The invention relates to a process for continuously preparing polyamide oligomers. This comprises continuous conveying of an aqueous solution of polyamide-forming monomers from a reservoir vessel into an oligomerization reactor, heating of the aqueous solution beyond a dissolution or storage temperature, the residence time of the monomer solution in the oligomerization reactor being limited and the pressure or the partial vapor pressure of the water being adjusted such that a conversion of monomers to polyamide oligomers does not exceed a maximum value and/or the polyamide oligomers formed do not phase-separate or spontaneously crystallize in solid form, and continuous discharge of the polyamide oligomers from the oligomerization reactor. A polyamide oligomer preparable by this process can be provided continuously in a mixture with water in a process for preparing a semicrystalline or amorphous, thermoplastically processible polyamide and then postcondensed to give a polyamide.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: June 9, 2020
    Assignee: BASF SE
    Inventors: Joachim Clauss, Stefan Schwiegk, Gad Kory, Christian Schmidt, Axel Wilms, Florian Richter, Ning Zhu, Silke Biedasek, Isa Alexandra Queiroz Da Fonseca, Heinrich Sack, Arnold Schneller, Achim Stammer, Volker Rauschenberger
  • Publication number: 20200171746
    Abstract: The invention relates to a container for holding a photosensitive liquid for use in a stereolithographic system in which a reference layer is exposed to radiation for the layer-by-layer or continuous creation of workpieces. At least one element of the container which is directly adjacent to the reference layer consists of at least one material which is at least partially transparent to the radiation and at least some of which has structures and/or pores which can receive and discharge, preferably also store, an inhibitor and/or an inhibitor mixture. Therefore, the element is not just able to supply the inhibitor but to a significant extent consists of the inhibitor itself, as a result of which the supplied flow is equalized or homogenized. Rapid or even continuous 3D printing is thus made possible in a cost-effective manner.
    Type: Application
    Filed: June 21, 2018
    Publication date: June 4, 2020
    Applicant: DENTSPLY SIRONA INC.
    Inventor: Christian SCHMIDT
  • Patent number: 10662263
    Abstract: The invention relates to an aqueous coagulatable polymer dispersion comprising at least one polymer which is dispersed in an aqueous phase, thermoplastic micro-spheres which contain a propellant, and at least one additional component which is selected from the group consisting of polyols, polyamines, and thermoplastic polymers. The invention further relates to a coagulate which can be obtained by the thermal and/or mechanical and/or ultrasonically-initiated coagulation of the aqueous polymer dispersion according to the invention, to an adhesive comprising or consisting of the coagulate, to a substrate which is completely or partly coated with said coagulate, to a method for producing such a coated substrate, and to coated substrates which can be obtained using said method. The coagulate can be used as an adhesive or as a binder in 3D-printing methods.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 26, 2020
    Assignee: Jowat SE
    Inventors: Christian Schmidt, Christian Terfloth
  • Patent number: 10644814
    Abstract: One embodiment is directed to a device comprising one or more processing devices comprising an input and an output. The one or more processing devices are configured to receive an input signal via the input of the one or more processing devices. The one or more processing devices are further configured to apply a transfer function of a variable filter implemented via the one or more processing devices, the transfer function applied to the received input signal in order to generate a filtered signal, wherein application of the transfer function cancels, reduces, attenuates, or eliminates intermodulation byproducts of the input signal. The one or more processing devices are further configured to output the filtered signal via the output of the one or more processing devices.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: May 5, 2020
    Assignee: CommScope Technologies LLC
    Inventor: Nelson Christian Schmidt, Jr.
  • Patent number: 10626196
    Abstract: The invention relates to an aqueous coagulatable polymer dispersion comprising at least one polymer which is dispersed in an aqueous phase, thermoplastic micro-spheres which contain a propellant, and at least one additional component which is selected from the group consisting of polyols, polyamines, and thermoplastic polymers. The invention further relates to a coagulate which can be obtained by the thermal and/or mechanical and/or ultrasonically-initiated coagulation of the aqueous polymer dispersion according to the invention, to an adhesive comprising or consisting of the coagulate, to a substrate which is completely or partly coated with said coagulate, to a method for producing such a coated substrate, and to coated substrates which can be obtained using said method. The coagulate can be used as an adhesive or as a binder in 3D-printing methods.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 21, 2020
    Assignee: Jowat SE
    Inventors: Christian Schmidt, Christian Terfloth
  • Publication number: 20200116782
    Abstract: Localizing hot spots in multi layered device under test (DUT) by using lock-in thermography (LIT) where plural hot spots of electrical circuits are buried in the DUT at different depth layers from a bottom layer to a top layer, comprises applying test signals of multiple frequencies to the electrical circuits of the DUT for exciting the hot spots; imaging a top surface of the top layer of the DUT at timed intervals to obtain IR images of the DUT while the test signal is applied to the electrical circuits wherein the images are in correlation to a propagation of heat from the hot spots in the DUT; detecting the thermal response signals at the timed intervals from the images taken from the DUT; and determining changes in the appearance of hot spot images on the top surface of the DUT in relation to the frequencies of the thermal response signals.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Applicant: FEI EFA, Inc.
    Inventor: Christian Schmidt
  • Patent number: 10577538
    Abstract: The present invention relates to a method for utilizing fine-particle peat, in particular to a method for improving the stability of planting substrates.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: March 3, 2020
    Assignee: Jowat AG
    Inventors: Christian Terfloth, Christian Schmidt
  • Patent number: 10545186
    Abstract: Localizing hot spots in multi layered device under test (DUT) by using lock-in thermography (LIT) where plural hot spots of electrical circuits are buried in the DUT at different depth layers from a bottom layer to a top layer, comprises applying test signals of multiple frequencies to the electrical circuits of the DUT for exciting the hot spots; imaging a top surface of the top layer of the DUT at timed intervals to obtain IR images of the DUT while the test signal is applied to the electrical circuits wherein the images are in correlation to a propagation of heat from the hot spots in the DUT; detecting the thermal response signals at the timed intervals from the images taken from the DUT; and determining changes in the appearance of hot spot images on the top surface of the DUT in relation to the frequencies of the thermal response signals.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: January 28, 2020
    Assignee: FEI EFA, Inc.
    Inventor: Christian Schmidt
  • Publication number: 20190334639
    Abstract: One embodiment is directed to a device comprising one or more processing devices comprising an input and an output. The one or more processing devices are configured to receive an input signal via the input of the one or more processing devices. The one or more processing devices are further configured to apply a transfer function of a variable filter implemented via the one or more processing devices, the transfer function applied to the received input signal in order to generate a filtered signal, wherein application of the transfer function cancels, reduces, attenuates, or eliminates intermodulation byproducts of the input signal. The one or more processing devices are further configured to output the filtered signal via the output of the one or more processing devices.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Applicant: CommScope Technologies LLC
    Inventor: Nelson Christian Schmidt, JR.
  • Publication number: 20190316967
    Abstract: An SMD-enabled infrared thermopile sensor has at least one miniaturized thermopile pixel on a monolithically integrated sensor chip accommodated in a hermetically sealed housing which consists of an at least partially non-metallic housing substrate and a housing cover. A gas or a gas mixture is contained in the housing. The sensor has a particularly low overall height, in particular in the z direction. This is achieved by virtue of an aperture opening being introduced in the housing cover opposite the thermopile pixel(s), which aperture opening is closed with a focusing lens which focuses the radiation from objects onto the thermopile pixel(s) on the housing substrate, and by virtue of a signal processing unit being integrated on the same sensor chip next to the thermopile pixels, wherein the total housing height and the housing cover are at most 3 mm or less than 2.5 mm.
    Type: Application
    Filed: December 22, 2017
    Publication date: October 17, 2019
    Inventors: Jörg Schieferdecker, Frank HERRMANN, Christian SCHMIDT, Wilhelm Leneke, Marion Simon, Karlheinz Storck, Mischa SCHULZE
  • Patent number: 10448324
    Abstract: Certain aspects involve power management subsystems for a distributed antenna system (“DAS”) or other telecommunication system. The power management subsystem can include a measurement module and an optimization module. The measurement module can monitor a utilization metric for a remote unit in the DAS or other telecommunication system. The power optimization module can determine whether the remote unit is underutilized based on the monitored utilization metric. The power optimization module can configure the remote unit for a low-power operation in response to determining that the remote unit is underutilized.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 15, 2019
    Assignee: CommScope Technologies LLC
    Inventors: Neil T. Hobbs, Nelson Christian Schmidt, Jr., Michael J. Williamson, Fred William Phillips, Charles B. Morrison, Christopher Goodman Ranson, Thomas Kummetz, Matthew Thomas Melester
  • Publication number: 20190265105
    Abstract: The invention relates to a thermopile infrared individual sensor in a housing that is filled with a gaseous medium having optics and one or more sensor chips with individual sensor cells with infrared sensor structures with reticulated membranes, the infrared-sensitive regions of which are spanned by, in each case, at least one beam over a cavity in a carrier body with good thermal conduction. The object of the invention consists of specifying a thermopile infrared sensor using monolithic Si-micromechanics technology for contactless temperature measurements, which, in the case of a sufficiently large receiver surface, outputs a high signal with a high response speed and which can operated in a gaseous medium with normal pressure or reduced pressure and which is producible in mass produced numbers without complicated technology for sealing the housing.
    Type: Application
    Filed: June 13, 2017
    Publication date: August 29, 2019
    Applicant: Heimann Sensor GmbH
    Inventors: Marion SIMON, Mischa SCHULZE, Wilhelm LENEKE, Karlheinz STORCK, Frank HERRMANN, Christian SCHMIDT, Jörg SCHIEFERDECKER
  • Patent number: 10389062
    Abstract: A plug connector having a housing and at least one contact element which is fixed within the housing and is designed for connection to a wire of a cable, which wire is partially surrounded by a jacket, wherein the housing comprises two housing parts which are designed in such a way that they are fitted to one another in order to assemble the plug connector and are connected by being moved in the longitudinal direction of the plug connector until they reach an end position, wherein, owing to the movement, a part of at least of one of the housing parts, which part is provided for receiving a portion of the jacket, is radially deformed in order to fix the jacket.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: August 20, 2019
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventors: Martin Zebhauser, Till Bredbeck, Christian Schmidt
  • Patent number: 10351671
    Abstract: The present invention relates to a method for producing semi-aromatic copolyamides with a high diamine excess in the reaction batch.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: July 16, 2019
    Assignee: BASF SE
    Inventors: Axel Wilms, Christian Schmidt, Florian Richter, Joachim Clauss, Gad Kory, Stefan Schwiegk, Arnold Schneller
  • Patent number: 10355705
    Abstract: It is provided a signal processing system, comprising at least a first, a second and a third digital-to-analog converter (DAC); a processing unit configured for splitting a sampled signal into a first and a second signal corresponding to different frequency portions of the sampled signal, transmitting the first signal to the first DAC, splitting the second signal into a first and a second subsignal and transmitting the first subsignal to the second DAC and the second subsignal to the third DAC, the first subsignal corresponding to the real part of the second signal and the second subsignal corresponding to the imaginary part of the second signal; an IQ mixer configured for mixing an analog output signal of the second DAC and an analog output signal of the third DAC and a combiner for combining an analog output signal of the first DAC and an output signal of the IQ mixer.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: July 16, 2019
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V., TECHNISCHE UNIVERSITÄT BERLIN
    Inventors: Christian Schmidt, Christoph Kottke, Volker Jungnickel, Jonas Hilt
  • Patent number: 10348424
    Abstract: One embodiment is directed to a distributed antenna system (DAS) comprising a plurality of nodes, including a head-end unit and a plurality of remote units that are communicatively coupled to the head-end unit. The head-end unit is configured to receive uplink received signals from remote units that wirelessly transceive signals in a coverage area. The head-end unit is configured to sum two or more of the uplink received signals to produce a summed uplink received signal. At least one of the nodes of the DAS includes a processing device configured to determine a transfer function and apply the transfer function to signals in the DAS to cancel, reduce, attenuate, or eliminate intermodulation byproducts in the summed uplink received signal.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: July 9, 2019
    Assignee: CommScope Technologies LLC
    Inventor: Nelson Christian Schmidt, Jr.
  • Publication number: 20190153456
    Abstract: The present invention relates to plants having increased number of flowers, pod and increased thousand seed weight (TSW). More specifically, the invention relates to Brassica plants in which expression of Cytokinin oxidase 5 or Cytokinin oxidase 5 and 3 is functionally reduced. Provided are Brassica plants comprising mutant CKX alleles, and Brassica plants in which expression of CKX is reduced. Also provided are methods and means to produce Brassica plants with increased number of flowers, pod or TSW.
    Type: Application
    Filed: October 13, 2016
    Publication date: May 23, 2019
    Inventors: Freya LAMMERTYN, Marc BOTS, Benjamin LAGA, Ralf-Christian SCHMIDT, Julia SCHMIDT, Celine MOUCHEL
  • Publication number: 20190132048
    Abstract: It are provided an optical communication system and an optical communication method. The system comprising at least two optical channels for communicating optical data signals; at least one optical filter arrangement for compensating distortions of the optical data signals communicated via the optical channels and/or crosstalk between the optical channels. The optical filter arrangement comprises at least one optical filter assigned to one of the optical channels and at least one optical filter assigned to the other one of the optical channels, wherein each one of the optical filters is configurable in such a way that different wavelength components of an incoming optical signal will be modified individually.
    Type: Application
    Filed: June 8, 2016
    Publication date: May 2, 2019
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Christian SCHMIDT, Volker JUNGNICKEL
  • Publication number: 20190101332
    Abstract: The invention relates to an induction furnace for carrying out a heat treatment of a dental replacement part, comprising an induction coil, a radiant heater, an insulation layer and a furnace chamber. The induction furnace has a cooling system with a liquid cooling system in order to control an internal temperature of the furnace chamber.
    Type: Application
    Filed: February 24, 2017
    Publication date: April 4, 2019
    Applicant: DENTSPLY SIRONA Inc.
    Inventors: Christian SCHMIDT, Michael BAURER