Patents by Inventor Christine D. Nelson

Christine D. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10724985
    Abstract: A biosensor has an underfill detection system that determines whether a sample of a biological fluid is large enough for an analysis of one or more analytes. The underfill detection system applies an excitation signal to the sample, which generates an output signal in response to the excitation signal. The underfill detection system switches the amplitude of the excitation signal. The transition of the excitation signal to a different amplitude changes the output signal when the sample is not large enough for an accurate and/or precise analysis. The underfill detection system measures and compares the output signal with one or more underfill thresholds to determine whether an underfill condition exists.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: July 28, 2020
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Patent number: 10261044
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: April 16, 2019
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Publication number: 20180196000
    Abstract: A biosensor has an underfill detection system that determines whether a sample of a biological fluid is large enough for an analysis of one or more analytes. The underfill detection system applies an excitation signal to the sample, which generates an output signal in response to the excitation signal. The underfill detection system switches the amplitude of the excitation signal. The transition of the excitation signal to a different amplitude changes the output signal when the sample is not large enough for an accurate and/or precise analysis. The underfill detection system measures and compares the output signal with one or more underfill thresholds to determine whether an underfill condition exists.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Patent number: 9939406
    Abstract: A biosensor has an underfill detection system that determines whether a sample of a biological fluid is large enough for an analysis of one or more analytes. The underfill detection system applies an excitation signal to the sample, which generates an output signal in response to the excitation signal. The underfill detection system switches the amplitude of the excitation signal. The transition of the excitation signal to a different amplitude changes the output signal when the sample is not large enough for an accurate and/or precise analysis. The underfill detection system measures and compares the output signal with one or more underfill thresholds to determine whether an underfill condition exists.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: April 10, 2018
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Publication number: 20160356738
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Application
    Filed: August 23, 2016
    Publication date: December 8, 2016
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 9459229
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: October 4, 2016
    Assignee: Ascenia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 9301717
    Abstract: A biosensor has an abnormal output detection system that determines whether an output signal from the redox reaction of an analyte has a normal or abnormal shape or configuration. The abnormal output detection system improves the accuracy and precision of the biosensor in determining whether an output signal has a shape or configuration that may not provide an accurate and/or precise analysis of a biological fluid. The biosensor generates an output signal in response to the redox reaction of the analyte. The biosensor normalizes the output signal and compares the normalized output signal with one or more control limits. The biosensor may generate an error signal when the normalized output signal is not within the control limits.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: April 5, 2016
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Scott Carpenter, Christine D. Nelson, Huan-Ping Wu
  • Publication number: 20160084792
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Application
    Filed: December 10, 2015
    Publication date: March 24, 2016
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 9239312
    Abstract: The present invention relates to methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: January 19, 2016
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Publication number: 20150144508
    Abstract: A biosensor has an underfill detection system that determines whether a sample of a biological fluid is large enough for an analysis of one or more analytes. The underfill detection system applies an excitation signal to the sample, which generates an output signal in response to the excitation signal. The underfill detection system switches the amplitude of the excitation signal. The transition of the excitation signal to a different amplitude changes the output signal when the sample is not large enough for an accurate and/or precise analysis. The underfill detection system measures and compares the output signal with one or more underfill thresholds to determine whether an underfill condition exists.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Patent number: 8973422
    Abstract: A biosensor has an underfill detection system that determines whether a sample of a biological fluid is large enough for an analysis of one or more analytes. The underfill detection system applies an excitation signal to the sample, which generates an output signal in response to the excitation signal. The underfill detection system switches the amplitude of the excitation signal. The transition of the excitation signal to a different amplitude changes the output signal when the sample is not large enough for an accurate and/or precise analysis. The underfill detection system measures and compares the output signal with one or more underfill thresholds to determine whether an underfill condition exists.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: March 10, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Patent number: 8877035
    Abstract: A sensor system, device, and methods for determining the concentration of an analyte in a sample is described. Gated amperometric pulse sequences including multiple duty cycles of sequential excitations and relaxations may provide a shorter analysis time and/or improve the accuracy and/or precision of the analysis. The disclosed gated amperometric pulse sequences may reduce analysis errors arising from the hematocrit effect, variance in cap-gap volumes, non-steady-state conditions, mediator background, under-fill, temperature changes in the sample, and a single set of calibration constants.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: November 4, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Greg P. Beer
  • Publication number: 20140305808
    Abstract: The present invention relates to methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 16, 2014
    Applicant: BAYER HEALTHCARE LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 8841133
    Abstract: A biosensor system determines analyte concentration from an output signal generated by an oxidation/reduction reaction of the analyte. The biosensor system adjusts a correlation for determining analyte concentrations from output signals at one temperature to determining analyte concentrations from output signals at other temperatures. The temperature-adjusted correlation between analyte concentrations and output signals at a reference temperature may be used to determine analyte concentrations from output signals at a sample temperature.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: September 23, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Patent number: 8728299
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: May 20, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 8702965
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 22, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Publication number: 20140061062
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 6, 2014
    Applicant: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Publication number: 20130288282
    Abstract: A biosensor system determines analyte concentration from an output signal generated by an oxidation/reduction reaction of the analyte. The biosensor system adjusts a correlation for determining analyte concentrations from output signals at one temperature to determining analyte concentrations from output signals at other temperatures. The temperature-adjusted correlation between analyte concentrations and output signals at a reference temperature may be used to determine analyte concentrations from output signals at a sample temperature.
    Type: Application
    Filed: May 2, 2013
    Publication date: October 31, 2013
    Applicant: BAYER HEALTHCARE LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Publication number: 20130256156
    Abstract: A sensor system, device, and methods for determining the concentration of an analyte in a sample is described. Gated amperometric pulse sequences including multiple duty cycles of sequential excitations and relaxations may provide a shorter analysis time and/or improve the accuracy and/or precision of the analysis. The disclosed gated amperometric pulse sequences may reduce analysis errors arising from the hematocrit effect, variance in cap-gap volumes, non-steady-state conditions, mediator background, under-fill, temperature changes in the sample, and a single set of calibration constants.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 3, 2013
    Inventors: Huan-Ping Wu, Christine D. Nelson, Greg P. Beer
  • Patent number: 8445290
    Abstract: A biosensor system determines analyte concentration from an output signal generated by an oxidation/reduction reaction of the analyte. The biosensor system adjusts a correlation for determining analyte concentrations from output signals at one temperature to determining analyte concentrations from output signals at other temperatures. The temperature-adjusted correlation between analyte concentrations and output signals at a reference temperature may be used to determine analyte concentrations from output signals at a sample temperature.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 21, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson