Patents by Inventor Christof Metzmacher

Christof Metzmacher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230019744
    Abstract: An insert for a source chamber of an EUV radiation source has a pressure stage and, spaced apart from it, a stop.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 19, 2023
    Inventors: Michael Hagg, Juan Jose Hasbun Wood, Iris Pilch, Christof Metzmacher
  • Patent number: 11550225
    Abstract: An inner insert for a passage opening in an outer insert for an EUV radiation source is embodied in multiple parts and/or has a plurality of sections that extend in the longitudinal direction and have different internal diameters (di, da).
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: January 10, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Iris Pilch, Juan Jose Hasbun Wood, Christof Metzmacher, Michael Hagg
  • Publication number: 20210382395
    Abstract: An inner insert for a passage opening in an outer insert for an EUV radiation source is embodied in multiple parts and/or has a plurality of sections that extend in the longitudinal direction and have different internal diameters (di, da).
    Type: Application
    Filed: June 2, 2021
    Publication date: December 9, 2021
    Inventors: Iris Pilch, Juan Jose Hasbun Wood, Christof Metzmacher, Michael Hagg
  • Patent number: 9897724
    Abstract: The present invention relates to an optical device and a method of in situ treating an optical component (2, 6, 13) reflecting EUV and/or soft X-ray radiation in said optical device, said optical component (2, 6, 13) being arranged in a vacuum chamber (14) of said optical device and comprising one or several reflecting surfaces (3) having a top layer of one or several surface materials. In the method, a source (1, 5) of said one or several surface materials is provided in said chamber (14) of said optical device and surface material from said source (1, 5) is deposited on said one or several reflecting surfaces (3) during operation and/or during operation-pauses of said optical device in order to cover or substitute deposited contaminant material and/or to compensate for ablated surface material.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: February 20, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Zink, Christof Metzmacher, Rolf Theo Anton Apetz
  • Patent number: 9599812
    Abstract: Disclosed herein a rotational type foil trap that is capable of avoiding the transmission rate of the EUV light to be lowered even when the EUV light source operates with the high input power and also suppressing the temperature increase of the foil to attain a sufficient life duration. In the rotational type foil trap, one end of each of foils is inserted into each of a plurality of grooves provided on a side face of a center support, and the center support and the each of the foils are fixed together by brazing.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: March 21, 2017
    Assignee: USHIO DENKI KABUSHIKI KAISHA
    Inventors: Christof Metzmacher, Hermann Giese, Achim Weber, Hironobu Yabuta, Rolf Theo Anton Apetz, Tatsushi Igarashi, Hiroto Sato, Noritaka Ashizawa
  • Patent number: 9421647
    Abstract: The present invention relates to a method of manufacturing mirror shells of a nested shells grazing incidence mirror, in particular for EUV radiation and/or X-rays. In the method a blank of a bulk material is provided and machined to form a mirror body of the shell. Mechanical structures are integrated and/or attached to the mirror body during and/or after the machining step. The mechanical structures are required for mounting and/or operating the mirror shells. After these steps the optical surface is formed on the mirror body by diamond turning. The proposed method allows the manufacturing of mirror shells of a nested shells grazing incidence mirror at low costs with high optical quality which may also be refurbished one or several times.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: August 23, 2016
    Assignee: USHIO DENKI KABUSHIKI KAISHA
    Inventors: Christof Metzmacher, Max Christian Schuermann
  • Publication number: 20160195714
    Abstract: Disclosed herein a rotational type foil trap that is capable of avoiding the transmission rate of the EUV light to be lowered even when the EUV light source operates with the high input power and also suppressing the temperature increase of the foil to attain a sufficient life duration. In the rotational type foil trap, one end of each of foils is inserted into each of a plurality of grooves provided on a side face of a center support, and the center support and the each of the foils are fixed together by brazing.
    Type: Application
    Filed: September 5, 2014
    Publication date: July 7, 2016
    Applicant: USHIO DENKI KABUSHIKI KAISHA
    Inventors: Christof METZMACHER, Hermann GIESE, Achim WEBER, Hironobu YABUTA, Rolf Theo Anton APETZ, Tatsushi IGARASHI, Hiroto SATO, Noritaka ASHIZAWA
  • Publication number: 20150338560
    Abstract: The present invention relates to an optical device and a method of in situ treating an optical component (2, 6, 13) reflecting EUV and/or soft X-ray radiation in said optical device, said optical component (2, 6, 13) being arranged in a vacuum chamber (14) of said optical device and comprising one or several reflecting surfaces (3) having a top layer of one or several surface materials. In the method, a source (1, 5) of said one or several surface materials is provided in said chamber (14) of said optical device and surface material from said source (1, 5) is deposited on said one or several reflecting surfaces (3) during operation and/or during operation-pauses of said optical device in order to cover or substitute deposited contaminant material and/or to compensate for ablated surface material.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventors: PETER ZINK, CHRISTOF METZMACHER, ROLF THEO ANTON APETZ
  • Patent number: 9110390
    Abstract: A method of in situ treating an optical component reflecting EUV and/or soft X-ray radiation in an optical device includes providing at least one source of one or several surface materials in a vacuum chamber of the optical device where the optical component is arranged. The optical component includes one or several reflecting surfaces having a top layer of one or several surface materials. The method includes providing a source of the one or several surface materials in the chamber, and depositing surface material from the source on the one or several reflecting surfaces during operation and/or during operation-pauses of the optical device in order to cover or substitute deposited contaminant material and/or to compensate for ablated surface material.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 18, 2015
    Assignee: KONINKLIJKE PHILPS N.V.
    Inventors: Peter Zink, Christof Metzmacher, Rolf Theo Anton Apetz
  • Patent number: 8891058
    Abstract: The invention relates to an improved EUV generating device having a contamination captor for “catching” contamination and/or debris caused by corrosion or otherwise unwanted reactions of the tin bath.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: November 18, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Christof Metzmacher, Achim Weber
  • Publication number: 20140173875
    Abstract: The present invention relates to a method of manufacturing mirror shells of a nested shells grazing incidence mirror, in particular for EUV radiation and/or X-rays. In the method a blank of a bulk material is provided and machined to form a mirror body of the shell. Mechanical structures are integrated and/or attached to the mirror body during and/or after the machining step. The mechanical structures are required for mounting and/or operating the mirror shells. After these steps the optical surface is formed on the mirror body by diamond turning. The proposed method allows the manufacturing of mirror shells of a nested shells grazing incidence mirror at low costs with high optical quality which may also be refurbished one or several times.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 26, 2014
    Applicant: USHIO DENKI KABUSHIKI KAISHA
    Inventors: CHRISTOF METZMACHER, MAX CHRISTIAN SCHUERMANN
  • Patent number: 8749178
    Abstract: The present invention relates to an electrode system, in particular of a gas discharge device for generating EUV radiation and/or soft X-rays. The electrode system comprises at least two electrodes (1, 2) formed of an electrode material which contains Mo or W or an alloy of Mo or W as a main component. The electrode material has a fine grained structure with fine grains having a mean size of <500 nm. With the proposed electrode system, a high thermo-mechanical and thermo-chemical resistance of the electrodes is achieved. The electrode system can therefore be used in known EUV light sources using liquid Sn and being operated at high temperatures.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: June 10, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Christof Metzmacher, Jeroen Jonkers, Rolf Theo Anton Apetz
  • Patent number: 8721778
    Abstract: The present invention relates to a foil trap device for debris mitigation, in particular in an EUV system. The foil trap comprises a plurality of spaced apart foils (4) extending from an entrance side towards an exit side of the foil trap, said foils (4) being arranged to allow a straight pass of radiation between the entrance side and the exit side. The foils (4) are coated at least at entrance side edges with a layer (8, 11) of a carbon material containing a fraction of at least 60% of sp3-hybridized carbon atoms, or with a layer (8, 11) of carbon nanotubes. As an alternative, the foils (4) are made of a bulk carbon material of the above composition. The proposed foil trap offers the combination of a high thermal conductivity, a high thermo-chemical resistance against Sn and other liquid metals and a high mechanical stiffness.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: May 13, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Christof Metzmacher, Michael Schaaf, Peter Klaus Bachmann
  • Publication number: 20140097914
    Abstract: A bulk acoustic wave resonator comprising a substrate, a Bragg reflector, a top and a bottom electrode and a piezoelectric layer with means for suppression of the pass-band ripples in a bulk acoustic wave filter. The means for absorbing or scattering the spurious modes are a roughened rear side of the substrate, an absorbing layer disposed on the rear side of the substrate and/or an absorbing layer disposed on the front side of the substrate.
    Type: Application
    Filed: December 11, 2013
    Publication date: April 10, 2014
    Applicant: TriQuint Semiconductor, Inc.
    Inventors: Hans-Peter Lobl, Robert Frederick Milsom, Christof Metzmacher, Hans-Wolfgang Brand, Mareike Katharine Klee, Rainer Kiewitt
  • Patent number: 8693090
    Abstract: The invention relates to an improved EUV reflecting element comprising a) a first layer essentially made out of a highly reflective material b) a second layer having a thickness of ?5 nm and essentially made out of a material with a sputter resistance of ?10 nm per 108 shots and whereby the second layer is provided in the path of the incident and/or reflected EUV light.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: April 8, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Christof Metzmacher
  • Patent number: 8519367
    Abstract: The invention relates to an improved EUV generating device having coated supply pipes for the liquid tin, in order to provide an extreme UV radiation generating device which is capable of providing a less contaminated flow of tin to and from a plasma generating part.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: August 27, 2013
    Assignees: Koninklijke Philips N.V., Xtreme Technologies GmbH
    Inventors: Christof Metzmacher, Achim Weber
  • Publication number: 20120216681
    Abstract: The present invention relates to a foil trap device for debris mitigation, in particular in an EUV system. The foil trap comprises a plurality of spaced apart foils (4) extending from an entrance side towards an exit side of the foil trap, said foils (4) being arranged to allow a straight pass of radiation between the entrance side and the exit side. The foils (4) are coated at least at entrance side edges with a layer (8, 11) of a carbon material containing a fraction of at least 60% of sp3-hybridized carbon atoms, or with a layer (8, 11) of carbon nanotubes. As an alternative, the foils (4) are made of a bulk carbon material of the above composition. The proposed foil trap offers the combination of a high thermal conductivity, a high thermo-chemical resistance against Sn and other liquid metals and a high mechanical stiffness.
    Type: Application
    Filed: September 14, 2010
    Publication date: August 30, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christof Metzmacher, Michael Schaaf, Peter Klaus Bachmann
  • Publication number: 20120212158
    Abstract: The present invention relates to an electrode system, in particular of a gas discharge device for generating EUV radiation and/or soft X-rays. The electrode system comprises at least two electrodes (1, 2) formed of an electrode material which contains Mo or W or an alloy of Mo or W as a main component. The electrode material has a fine grained structure with fine grains having a mean size of <500 nm. With the proposed electrode system, a high thermo-mechanical and thermo-chemical resistance of the electrodes is achieved. The electrode system can therefore be used in known EUV light sources using liquid Sn and being operated at high temperatures.
    Type: Application
    Filed: September 29, 2010
    Publication date: August 23, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christof Metzmacher, Jeroen Jonkers, Rolf Theo Anton Apetz
  • Patent number: 8097092
    Abstract: The present invention relates to a method of cleaning and after treatment of optical surfaces in an irradiation unit, said irradiation unit comprising a radiation source (1, 31) emitting EUV-radiation and/or soft X-rays, a first volume (40) following said radiation source (1, 31) and containing first optical components (3, 33) with said optical surfaces, and a second volume (41) following said first volume (40) and containing second optical components (38). The method comprises at least one cleaning step in which a first gas or gas mixture is brought into contact with said optical surfaces, thereby forming volatile compounds with contaminations deposited on said optical surfaces, wherein said compounds are pumped out of the first volume (40) together with the first gas or gas mixture.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: January 17, 2012
    Assignee: Kninklijke Philips Electronics N.V.
    Inventors: Guenther Hans Derra, Thomas Kruecken, Christof Metzmacher, Achim Weber, Peter Zink
  • Patent number: 8076655
    Abstract: The present invention provides a method of cleaning optical surfaces in an irradiation unit in order to remove contaminations deposited on said optical surfaces. The method includes a cleaning step in which a first gas or gas mixture is brought into contact with said optical surfaces thereby forming a volatile compound with a first portion of said contaminations. In an operation pause of the irradiation unit prior to the cleaning step, a pretreatment step is performed, in which a second gas or gas mixture is brought into contact with said optical surfaces. Said second gas or gas mixture is selected to react with a second portion of said contaminations different from said first portion to form a reaction product, which is able to form a volatile compound with said first gas or gas mixture.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: December 13, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Guenther Hans Derra, Thomas Kruecken, Christof Metzmacher, Achim Weber, Peter Zink