Patents by Inventor Christoph Schelling

Christoph Schelling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150102443
    Abstract: An infrared sensor device includes at least one sensor element formed in a semiconductor substrate, an SOI wafer that defines a gap below and around the sensor element, and a suspension device that is configured to suspend the sensor element in the SOI wafer. The sensor element is substantially arranged below the suspension device, thereby achieving a high sensitivity, low thermal capacity, low thermal coupling to the substrate and a high image refresh rate.
    Type: Application
    Filed: April 12, 2013
    Publication date: April 16, 2015
    Inventors: Ingo Herrmann, Christoph Schelling
  • Publication number: 20150078590
    Abstract: The disclosure relates to a micro-electromechanical membrane arrangement with a substrate, which has a multiplicity of recesses on a surface, a first electrically conductive electrode layer, which is arranged on the surface of the substrate and has a multiplicity of first depressions coinciding with the recesses, and an electrically conductive membrane layer, which can be deflected in a direction perpendicular to the active surface of the substrate, is arranged over the first electrode layer and is kept at a distance therefrom by a first distance value.
    Type: Application
    Filed: March 5, 2013
    Publication date: March 19, 2015
    Inventors: Mike Daley, Rolf Scheben, Christoph Schelling
  • Publication number: 20150063608
    Abstract: An implementation for an electret in a capacitive MEMS element including a pressure-sensitive diaphragm, which is produce-able using standard methods of semiconductor technology for easy integration into the manufacturing process of MEMS semiconductor elements. Such MEMS elements include at least one pressure-sensitive diaphragm including at least one deflectable diaphragm electrode of a capacitor system for signal detection and one fixed non-pressure-sensitive counter-element including at least one counter-electrode of this capacitor system, at least one electrode of the capacitor system being provided with an electrically charged electret, so that there is a potential difference between the two electrodes of the capacitor system. The electret includes at least two adjacent layers made from different dielectric materials, electrical charges being stored on their boundary surface.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Christoph SCHELLING, Rolf SCHEBEN, Ricardo EHRENPFORDT
  • Publication number: 20150059482
    Abstract: A new signal acquisition concept is provided for MEMS components having a pressure-sensitive diaphragm element, which at least partially spans a pressure connection opening. This signal acquisition concept is distinguished by an especially high sensitivity. For this purpose, the MEMS component includes a resonant vibrator device having a vibrating element, which is suspended, capable of vibrating, within a closed cavity and is equipped with at least one drive electrode and at least one sensing electrode. The vibrating element of the resonant vibrator device is coupled mechanically to the diaphragm element, so that the vibrating element is deformed in the case of a diaphragm deflection.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: ROBERT BOSCH GMBH
    Inventors: Jochen ZOELLIN, Ricardo EHRENPFORDT, Juergen GRAF, Christoph SCHELLING, Frederik ANTE, Michael CURCIC
  • Publication number: 20150028207
    Abstract: A sensor arrangement includes an infrared sensor and at least one acceleration sensor. The infrared sensor is configured to detect infrared radiation, and to output infrared image data. The at least one acceleration sensor is configured to detect an instantaneous acceleration of the sensor arrangement, and to output acceleration data. The output of the infrared image data from the infrared sensor is blocked when the instantaneous acceleration of the sensor arrangement exceeds a preprogrammed threshold value.
    Type: Application
    Filed: January 24, 2013
    Publication date: January 29, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Ingo Herrmann, Christoph Schelling
  • Publication number: 20150014797
    Abstract: A microphone structure of an MEMS device has a layer construction including: a base substrate; a deflectable microphone diaphragm at least partly spanning a through-opening in the substrate; a deflectable electrode of a microphone condenser system; a stationary counter-element having ventilation openings situated in the layer construction over the microphone diaphragm and acting as a bearer for a stationary electrode of the microphone condenser system. The diaphragm is bonded into the layer construction on the substrate via a flexible beam. The otherwise free edge region of the diaphragm is curved in a pan shape, so that it extends both vertically and also in some regions laterally beyond the edge region of the through-opening, and the edge region of the through-opening forms a lower stop for the diaphragm movement.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Applicant: ROBERT BOSCH GMBH
    Inventors: Christoph SCHELLING, Stefan SINGER, Jochen ZOELLIN
  • Patent number: 8929584
    Abstract: Measures for dynamically regulating the microphone sensitivity of a MEMS microphone component at low frequencies by way of variable roll-off behavior are proposed. The micromechanical microphone structure of the component, which is implemented in a layer structure on a semiconductor substrate, encompasses an acoustically active diaphragm having leakage openings which spans a sound opening in the substrate back side, and a stationary acoustically permeable counterelement having through openings which is disposed in the layer structure above/below the diaphragm. The component furthermore encompasses a capacitor assemblage for signal sensing, having at least one deflectable electrode on the diaphragm and at least one stationary electrode on the counterelement, and an arrangement for implementing a relative motion between the diaphragm and counterelement parallel to the layer planes.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: January 6, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Zoellin, Christoph Schelling
  • Publication number: 20150001653
    Abstract: For simplifying the manufacture of a MEMS structural component including a deflectable diaphragm which spans an opening in the rear side of the structural component, and including a fixed counter-element, which is provided with passage openings, the counter-element from the base substrate of the MEMS structural component is patterned and the deflectable diaphragm is implemented in a layered structure on the base substrate. These measures are intended to improve the diaphragm properties and reduce the overall height of the MEMS structural component.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 1, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Christoph SCHELLING, Yvonne BERGMANN, Jochen REINMUTH
  • Patent number: 8901684
    Abstract: A micromechanical component including a first composite of a plurality of semiconductor chips, the first composite having a first front and back surfaces, a second composite of a corresponding plurality of carrier substrates, the second composite having a second front and back surfaces; wherein the first front surface and the second front surface are connected via a structured adhesion promoter layer in such a way that each semiconductor chip is connected, essentially free of cavities, to a corresponding carrier substrate corresponding to a respective micromechanical component.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: December 2, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Frank Henning, Armin Scharping, Christoph Schelling
  • Publication number: 20140319629
    Abstract: Measures are provided for increasing the resistance to compression of a component having a micromechanical microphone pattern. In particular, the robustness of the microphone pattern to highly dynamic pressure fluctuations is to be increased, without the microphone sensitivity, i.e. the microphone performance, being impaired. The microphone pattern of such a component is implemented in a layer construction on a semiconductor substrate and includes at least one acoustically active diaphragm, which spans a sound hole on the substrate backside, and a stationary acoustically penetrable counterelement having through hole openings, which is situated above/below the diaphragm in the layer construction. At least one outflow channel is developed which makes possible a rapid pressure equalization between the two sides of the diaphragm. In addition, at least one controllable closing element is provided, with which the at least one outflow channel is optionally able to be opened or closed.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 30, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Christoph SCHELLING, Stefan SINGER, Jochen ZOELLIN
  • Publication number: 20140291786
    Abstract: Substrate-side overload protection for the diaphragm structure of a microphone component having a micromechanical microphone structure which impairs the damping properties of the microphone structure as little as possible, in which the microphone structure includes a diaphragm structure having at least one acoustically active diaphragm which is formed in a diaphragm layer above a semiconductor substrate. The diaphragm structure spans at least one sound opening in the rear side of the substrate. A stationary, acoustically permeable counter element is formed in the layer structure of the component above the diaphragm layer. According to the invention, at least projections are formed at the outer edge area of the diaphragm structure which protrude beyond the edge area of the sound opening, so that the edge area of the sound opening acts as a substrate-side stop for the diaphragm structure.
    Type: Application
    Filed: July 20, 2012
    Publication date: October 2, 2014
    Inventors: Jochen Zoellin, Franz Laermer, Christoph Schelling, Mike Daley
  • Patent number: 8847336
    Abstract: In a micromechanical component having an inclined structure and a corresponding manufacturing method, the component includes a substrate having a surface; a first anchor, which is provided on the surface of the substrate and which extends away from the substrate; and at least one cantilever, which is provided on a lateral surface of the anchor, and which points at an inclination away from the anchor.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: September 30, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Tjalf Pirk, Stefan Pinter, Hubert Benzel, Heribert Weber, Michael Krueger, Robert Sattler, Frederic Njikam Njimonzie, Joerg Muchow, Joachim Fritz, Christoph Schelling, Christoph Friese
  • Publication number: 20140264649
    Abstract: A micromechanical structure includes a substrate, a micromechanical functional structure, and a conductor track arrangement. The substrate has a top side, and the micromechanical functional structure is formed in the substrate on the top side. The conductor track arrangement is formed above the top side of the substrate, and the conductor track arrangement includes at least two insulation layers of non-conductive material and a conductor track layer of conductive material located between the at least two insulation layers.
    Type: Application
    Filed: July 24, 2013
    Publication date: September 18, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Christoph Schelling
  • Patent number: 8816454
    Abstract: A microphone component has a micromechanical microphone pattern which is implemented in a layer construction on a semiconductor substrate and includes (i) an acoustically active diaphragm which at least partially spans a sound opening on the backside of the substrate, (ii) at least one movable electrode of a microphone capacitor system, and (iii) a stationary acoustically penetrable counterelement having through holes, which counterelement is situated in the layer construction over the diaphragm and functions as the carrier for at least one immovable electrode of the microphone capacitor system. The diaphragm is tied in to the semiconductor substrate in a middle area, and the diaphragm has a corrugated sheet metal type of corrugation, at least in regions.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: August 26, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Zoellin, Ricardo Ehrenpfordt, Juergen Graf, Christoph Schelling, Frederik Ante, Michael Curcic
  • Publication number: 20140225205
    Abstract: An MEMS component includes at least one metal-ceramic multilayer stack as a mechanical functional layer in the layered structure of the MEMS component. The metal-ceramic multilayer stack functions as a mechanical functional layer in which at least one component of the micromechanical structure of the MEMS component is configured.
    Type: Application
    Filed: January 16, 2014
    Publication date: August 14, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Jochen ZOELLIN, Christoph SCHELLING
  • Publication number: 20140159209
    Abstract: A manufacturing method is described for a micromechanical component and a corresponding micromechanical component. The manufacturing method includes the steps: forming at least one crystallographically modified area in a substrate; forming an etching mask having a mask opening on a main surface of the substrate; and carrying out an etching step using the etching mask, the crystallographically modified area and a surrounding area of the substrate being removed and thus forming a cavern in the substrate.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 12, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Christoph SCHELLING
  • Patent number: 8749013
    Abstract: A sensor, in particular for the spatially resolved detection, includes a substrate, at least one micropatterned sensor element having an electric characteristic whose value varies as a function of the temperature, and at least one diaphragm above a cavity, the sensor element being disposed on the underside of the at least one diaphragm, and the sensor element being contacted via connecting lines, which extend within, on top of or underneath the diaphragm. In particular, a plurality of sensor elements may be formed as diode pixels within a monocrystalline layer formed by epitaxy. Suspension springs, which accommodate the individual sensor elements in elastic and insulating fashion, may be formed within the diaphragm.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: June 10, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Simon Armbruster, Arnim Hoechst, Christoph Schelling, Ando Feyh
  • Publication number: 20140126762
    Abstract: Measures for dynamically regulating the microphone sensitivity of a MEMS microphone component at low frequencies by way of variable roll-off behavior are proposed. The micromechanical microphone structure of the component, which is implemented in a layer structure on a semiconductor substrate, encompasses an acoustically active diaphragm having leakage openings which spans a sound opening in the substrate back side, and a stationary acoustically permeable counterelement having through openings which is disposed in the layer structure above/below the diaphragm. The component furthermore encompasses a capacitor assemblage for signal sensing, having at least one deflectable electrode on the diaphragm and at least one stationary electrode on the counterelement, and an arrangement for implementing a relative motion between the diaphragm and counterelement parallel to the layer planes.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Jochen ZOELLIN, Christoph SCHELLING
  • Publication number: 20140124671
    Abstract: An image pixel apparatus for detecting electromagnetic radiation includes an absorption structure device configured to absorb the electromagnetic radiation and to take it up as a quantity of heat. At least one plasmonic resonance structure device of the apparatus is configured to forward the electromagnetic radiation to the absorption structure device. A detection device that has at least one detection element is configured to detect the electromagnetic radiation by way of changes in an electrical property of the at least one detection element that are caused by the quantity of heat taken up.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Ingo Herrmann, Christoph Schelling
  • Publication number: 20140124879
    Abstract: A packaging concept for MEMS components having at least one diaphragm structure formed in the front side of the component is provided, according to which the MEMS component is mounted on a support which at least laterally delimits a cavity adjoining the diaphragm structure. In addition, at least one electrical feedthrough is formed in the support which allows electrical contacting of the MEMS component through the support. To achieve the largest possible rear volume for the diaphragm structure of the MEMS component for a given chip surface area, and also to simplify the processing of the support, according to the invention the electrical feedthroughs are integrated into the wall of the cavity adjoining the diaphragm structure, in that at least one section of such a feedthrough is implemented in the form of an electrically conductive coating of a side wall section of the cavity.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Jochen ZOELLIN, Ricardo EHRENPFORDT, Christoph SCHELLING, Juergen GRAF, Frederik ANTE, Michael CURCIC